首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of nitrogen (N) isotope composition (delta(15)N) and total N contents were determined in leaves, fine roots, root-associated ectomycorrhizal fungi (ECM) of adult beech trees (FAGUS SYLVATICA), and soil material under ambient (1 x O(3)) and double ambient (2 x O(3)) atmospheric ozone concentrations over a period of two years. From fine root to leaf material delta(15)N decreased consecutively. Under enhanced ozone concentrations total N was reduced in fine roots and delta(15)N showed a decrease in roots and leaves. In the soil and in most types of mycorrhizae, delta(15)N and total N were not altered due to ozone fumigation. The number of vital ectomycorrhizal root tips increased and the mycorrhizal community structure changed in 2 x O(3). Simultaneously, the specific rate of inorganic N-uptake by the roots was reduced under the double ozone regime. From these results it is assumed that 2 x O(3) changes N-nutrition of the trees at the level of N-acquisition, as indicated by enhanced mycorrhizal root tip density, altered mycorrhizal species composition, and reduced specific N-uptake rates.  相似文献   

2.
The decomposition and the fate of 15N- labelled beech litter was monitored in a beech forest (Vosges mountains, France) over 3 years. Circular plots around beech trees were isolated from neighbouring tree roots by soil trenching. After removal of the litter layer, 15N-labelled litter was distributed on the soil. Samples [labelled litter, soil (0–15 cm depths], fine roots, mycorrhizal root tips, leaves) were collected during the subsequent vegetation periods and analysed for total N and 15N concentration. Mass loss of the 15N-labelled litter was estimated using mass loss data from a litterbag experiment set up at the field site. An initial and rapid release of soluble N from the decomposing litter was balanced by the incorporation of exogenous N into the litter. Fungal N accounted for approximately 35% of the N incorporation. Over 2 years, litter N was continuously released and rates of N and mass loss were equivalent, while litter N was preferentially lost during the 3rd year. Released 15N accumulated essentially at the soil surface. 15N from the decomposing litter was rapidly (i.e. in 6 months) detected in roots and beech leaves and its level increased regularly and linearly over the course of the labelling experiment. After 3 years, about 2% of the original litter N had accumulated in the trees. 15N budgets indicated that soluble N was the main source for soil microbial biomass. Nitrogen accumulated in storage compounds was the main source of leaf N, while soil organic N was the main source of mycorrhizal N. Use of 15N-labelled beech litter as decomposing substrate allowed assessment of the fate of litter N in the soil and tree N pools in a beech forest on different time scales. Received: 3 May 1999 / Accepted: 3 January 2000  相似文献   

3.
农田和森林土壤中氧化亚氮的产生与还原   总被引:14,自引:2,他引:12  
采用土壤淤浆方法对丹麦农田和山毛榉森林土壤反硝化过程中N2O的产生与还原进行了研究。同时考察了硝酸根和铵离子对反硝化作用的影响。结果表明,森林土壤反硝化活性大于农田土壤,但农田土壤中N2O还原活性大于森林土壤,表现在农田和森林土壤中N2O/N2的产生比率分别为0.11和3.65。硝酸根和铵离子能促进两种土壤中的N2O产生,但可降低农田土壤中的N2O还原速率,与农田土壤相比,硝酸根可降低森林土壤N2  相似文献   

4.
The mixture of other broadleaf species into beech forests in Central Europe leads to an increase of tree species diversity, which may alter soil biochemical processes. This study was aimed at 1) assessing differences in gross rates of soil N cycling among deciduous stands of different beech (Fagus sylvatica L.) abundance in a limestone area, 2) analyzing the relationships between gross rates of soil N cycling and forest stand N cycling, and 3) quantifying N2O emission and determining its relationship with gross rates of soil N cycling. We used 15N pool dilution techniques for soil N transformation measurement and chamber method for N2O flux measurement. Gross rates of mineral N production in the 0–5 cm mineral soil increased across stands of decreasing beech abundance and increasing soil clay content. These rates were correlated with microbial biomass which, in turn, was influenced by substrate quantity, quality and soil fertility. Leaf litter-N, C:N ratio and base saturation in the mineral soil increased with decreasing beech abundance. Soil mineral N production and assimilation by microbes were tightly coupled, resulting in low N2O emissions. Annual N2O emissions were largely contributed by the freeze-thaw event emissions, which were correlated with the amount of soil microbial biomass. Our results suggest that soil N availability may increase through the mixture of broadleaf species into beech forests.  相似文献   

5.
We have measured the uptake capacity of nitrogen (N) and potassium (K) from different soil depths by injecting 15N and caesium (Cs; as an analogue to K) at 5 and 50 cm soil depth and analysing the recovery of these markers in foliage and buds. The study was performed in monocultures of 40-year-old pedunculate oak (Quercus robur), European beech (Fagus sylvatica) and Norway spruce (Picea abies (L.) Karst.) located at an experimental site in Palsgård, Denmark. The markers were injected as a solution through plastic tubes around 20 trees of each species at either 5 or 50 cm soil depth in June 2003. After 65 days foliage and buds were harvested and the concentrations of 15N and Cs analysed. The recovery of 15N in the foliage and buds tended to be higher from 5 than 50 cm soil depth in oak whereas they where similar in spruce and beech after compensation for differences in immobilization of 15N in the soil. In oak more Cs was recovered from 5 than from 50 cm soil depth whereas in beech and spruce no difference could be detected. Out of the three investigated tree species, oak was found to have the lowest capacity to take up Cs at 50 cm soil depth compared to 5 cm soil depth also after compensating for differences in discrimination against Cs by the roots. The uptake capacity from 50 cm soil depth compared with 5 cm was higher than expected from the root distribution except for K in oak, which can probably be explained by a considerable overlap of the uptake zones around the roots and mycorrhizal hyphae in the topsoil. The study also shows that fine roots at different soil depths with different physiological properties can influence the nutrient uptake of trees. Estimates of fine root distribution alone may thus not reflect the nutrient uptake capacity of trees with sufficient accuracy. Our study shows that deep-rooted trees such as oak may have lower nutrient uptake capacity at deeper soil layers than more shallow-rooted trees such as spruce, as we found no evidence that deep-rooted trees obtained proportionally more nutrients from deeper soil layers. This has implications for models of nutrient cycling in forest ecosystems that use the distribution of roots as the sole criterion for predicting uptake of nutrients from different soil depths.  相似文献   

6.
Earthworms (Lumbricus rubellus and Octolasium lacteum) and gut homogenates did not produce CH(inf4), and methanogens were not readily culturable from gut material. In contrast, the numbers of culturable denitrifiers averaged 7 x 10(sup7) and 9 x 10(sup6) per g (dry weight) of gut material for L. rubellus and O. lacteum, respectively; these values were 256- and 35-fold larger than the numbers of culturable denitrifiers in the soil from which the earthworms were obtained. Anaerobically incubated earthworm gut homogenates supplemented with nitrate produced N(inf2)O at rates exceeding that of soil homogenates. Furthermore, living earthworms emitted N(inf2)O under aerobic conditions, and N(inf2)O emission was stimulated by acetylene. For earthworms collected from a mildly acidic (pH 6) beech forest soil, the rates of N(inf2)O emission for earthworms and soil averaged 884 and 2 pmol per h per g (fresh weight), respectively. In contrast, for earthworms collected from a more acidic (pH 4.6) oak-beech forest soil, N(inf2)O emission by earthworms and soil averaged 145 and 45 pmol per h per g (fresh weight), respectively. Based on the extrapolation of this data, earthworms accounted for an estimated 16 and 0.25% of the total N(inf2)O produced at the stand level of these beech and oak-beech forest soils, respectively.  相似文献   

7.
过量施肥对设施菜田土壤菌群结构及N2O产生的影响   总被引:1,自引:0,他引:1  
【背景】N_2O是一种很强的温室气体,其温室效应强度大约是CO_2的265倍。土壤氮肥施加量是影响N_2O排放的重要因素,而厌氧条件下微生物反硝化则是N_2O产生的重要途径。【目的】研究过量施肥条件下蔬菜大棚土壤菌群结构变化及其对N_2O气体排放的影响。【方法】利用自动化培养与实时气体检测系统(Robot)监测土壤厌氧培养过程中N_2O和N_2排放通量,比较过量施肥和减氮施肥模式下土壤N_2O排放模式的差异。通过Illumina二代测序平台对这2种不同施肥处理的土壤微生物群落进行高通量测序,研究不同施肥量对土壤菌群组成的影响。【结果】过量施肥土壤中硝酸盐的含量大约是减氮施肥土壤的2倍,通过添加硝酸盐使2种土壤的硝酸盐含量均为60 mg/kg或为200 mg/kg时,过量施肥土壤在厌氧培养前期N_2O气体的产生量及产生速度都明显高于减氮施肥土壤。另外,过量施肥导致土壤菌群结构发生显著改变,并且降低了土壤微生物的多样性。相对于减氮施肥,过量施肥方式富集了Rhodanobacter属的微生物。PICRUSt预测结果显示,传统施肥没有显著改变反硝化功能基因相对丰度。【结论】长期过量氮肥施用显著增加了土壤N_2O的排放,可能原因是施肥改变了包括氮转化相关微生物在内的土壤菌群组成,从而影响了土壤N_2O气体的形成与还原过程。  相似文献   

8.
Hagedorn  Frank  Bucher  Jürg B.  Tarjan  David  Rusert  Peter  Bucher-Wallin  Inga 《Plant and Soil》2000,224(2):273-286
The objectives of this study were to estimate how soil type, elevated N deposition (0.7 vs. 7 g N m–2y–1) and tree species influence the potential effects of elevated CO2 (370 vs. 570 mol CO2 mol–1) on N pools and fluxes in forest soils. Model spruce-beech forest ecosystems were established on a nutrient-rich calcareous sand and on a nutrient-poor acidic loam in large open-top chambers. In the fourth year of treatment, we measured N concentrations in the soil solution at different depths, estimated N accumulation by ion exchange resin (IER) bags, and quantified N export in drainage water, denitrification, and net N uptake by trees. Under elevated CO2, concentrations of N in the soil solution were significantly reduced. In the nutrient-rich calcareous sand, CO2 enrichment decreased N concentrations in the soil solution at all depths (–45 to –100%). In the nutrient-poor acidic loam, the negative CO2 effect was restricted to the uppermost 5 cm of the soil. Increasing the N deposition stimulated the negative impact of CO2 enrichment on soil solution N in the acidic loam at 5 cm depth from –20% at low N inputs to –70% at high N inputs. In the nutrient-rich calcareous sand, N additions did not influence the CO2 effect on soil solution N. Accumulation of N by IER bags, which were installed under individual trees, was decreased at high CO2 levels under spruce in both soil types. Under beech, this decrease occurred only in the calcareous sand. N accumulation by IER bags was negatively correlated with current-years foliage biomass, suggesting that the reduction of soil N availability indices was related to a CO2-induced growth enhancement. However, the net N uptake by trees was not significantly increased by elevated CO2. Thus, we suppose that the reduced N concentrations in the soil solution at elevated CO2 concentrations were rather caused by an increased N immobilisation in the soil. Denitrification was not influenced by atmospheric CO2 concentrations. CO2 enrichment decreased nitrate leaching in drainage by 65%, which suggests that rising atmospheric CO2 potentially increases the N retention capacity of forest ecosystems.  相似文献   

9.
Whilst forest policy promotes cultivation and regeneration of beech dominated forest ecosystems, beech itself is a highly drought sensitive tree species likely to suffer from the climatic conditions prognosticated for the current century. Taking advantage of model ecosystems with cool-moist and warm-dry local climate, the latter assumed to be representative for future climatic conditions, the effects of climate and silvicultural treatment (different thinning regimes) on water status, nitrogen balance and growth parameters of adult beech trees and beech regeneration in the understorey were assessed. In addition, validation experiments with beech seedlings were carried out under controlled conditions, mainly in order to assess the effect of drought on the competitive abilities of beech. As measures of water availability xylem flow, shoot water potential, stomatal conductance as well as delta (13)C and delta (18)O in different tissues (leaves, phloem, wood) were analysed. For the assessment of nitrogen balance we determined the uptake of inorganic nitrogen by the roots as well as total N content and soluble N compounds in different tissues of adult and young trees. Retrospective and current analysis of delta (13)C, growth and meteorological parameters revealed that beech growing under warm-dry climatic conditions were impaired in growth and water balance during periods with low rain-fall. Thinning affected water, N balance and growth mostly of young beech, but in a different way under different local climatic conditions. Under cool, moist conditions, representative for the current climatic and edaphic conditions in beech forests of Central Europe, thinning improves nutrient and water status consistent to published literature and long-term experience of forest practitioners. However, beech regeneration was impaired as a result of thinning at higher temperatures and under reduced water availability, as expected in future climate.  相似文献   

10.
Virtually complete nitrification of the available ammonium in soil and nitrification activity in the forest floor are important factors predisposing forests in the San Bernardino Mountains of southern California to nitrogen (N) saturation. As a result, inorganic N in the soil solution is dominated by nitrate. High nitrification rates also generate elevated nitric oxide (NO) emissions from soil. High-base cation saturation of these soils means that soil calcium depletion or effects associated with soil acidification are not an immediate risk for forest health as has been postulated for mesic forests in the eastern U.S. Physiological disturbance (e.g., altered carbon [C] cycling, reduced fine root biomass, premature needle abscission) of ozone-sensitive ponderosa pine trees exposed to high N deposition and high ozone levels appear to be the greater threat to forest sustainability. However, N deposition appears to offset the aboveground growth depression effects of ozone exposure. High nitrification activity reported for many western ecosystems suggests that with chronic N inputs these systems are prone to N saturation and hydrologic and gaseous losses of N. High runoff during the winter wet season in California forests under a Mediterranean climate may further predispose these watersheds to high nitrate leachate losses. After 4 years of N fertilization at a severely N saturated site in the San Bernardino Mountains, bole growth unexpectedly increased. Reduced C allocation below- ground at this site, presumably in response to ozone or N or both pollutants, may enhance the bole growth response to added N.  相似文献   

11.
We present the results of a study of the effects of chronic exposure to elevated ozone on the cytokinins of mature beech trees. Methods for analysing the cytokinin (CK) content of beech (FAGUS SYLVATICA) were developed using seven enzyme-linked immunosorbent assays (ELISAs). Samples taken during 2003 and 2004 from 10 mature beech trees in Kranzberg forest, 5 trees exposed to twice ambient ozone (2 x O(3)) by free-air fumigation and 5 control trees (1 x O(3)), were analysed. In 2003 and 2004 the cytokinin content of leaf samples followed a similar seasonal pattern. In leaf samples, the content of aromatic types was equal to that of the isoprenoid types. In root samples, the level of aromatic types was no different from leaves, but that of the isoprenoid types was much higher. Leaf and phloem cytokinin contents for 2 x O(3) trees were lower than for 1 x O(3) at almost all sampling times. The effect of ozone was greater for leaves in the sun crown than for leaves in the shade crown. By contrast, the root and xylem contents of cytokinin for 2 x O(3) trees were greatly elevated over the values for 1 x O(3) trees early in the growing season. We propose that O(3)-associated CK destruction in leaves reduces CK-mediated root growth suppression. The resulting increases in root growth and ectomycorrhiza, reported by other groups in the Kranzberg forest project, are likely to be responsible for the increased CK export in xylem, although O(3)-associated CK destruction in the leaves appears to nullify this increase.  相似文献   

12.
13.
Salinity represents an increasing environmental problem in managed ecosystems. Populus spp. is widely used for wood production by short-rotation forestry in fertilized plantations and can be grown on saline soil. Because N fertilization plays an important role in salt tolerance, we analysed Grey poplar (Populus tremula x alba, syn. Populus canescens) grown with either 1 mM nitrate or ammonium subjected to moderate 75 mM NaCl. The impact of N nutrition on amelioration of salt tolerance was analysed on different levels of N metabolism such as N uptake, assimilation and N (total N, proteins and amino compounds) accumulation. Na concentration increased in all tissues over time of salt exposure. The N nutrition-dependent effects of salt exposure were more intensive in roots than in leaves. Application of salt reduced root increment as well as stem height increase and, at the same time, increased the concentration of total amino compounds more intensively in roots of ammonium-fed plants. In leaves, salt treatment increased concentrations of total N more intensively in nitrate-fed plants and concentrations of amino compounds independently of N nutrition. The major changes in N metabolism of Grey poplar exposed to moderate salt concentrations were detected in the significant increase of amino acid concentrations. The present results indicate that N metabolism of Grey poplar exposed to salt performed better when the plants were fed with nitrate instead of ammonium as sole N source. Therefore, nitrate fertilization of poplar plantations grown on saline soil should be preferred.  相似文献   

14.
We investigated the effect of (a) different local climate and (b) thinning of the forest canopy on growth and N status of naturally regenerated European beech seedlings in a beech forest on shallow rendzina soil in southern Germany. For this purpose, a 15N-tracing experiment was conducted during the growing season of the year 2000 with beech seedlings growing on a warm, dry SW-exposed site and a cooler, moist NE-exposed site, and in a thinned and a control stand at each site. Biomass, 15N uptake and partitioning and total N concentrations of beech seedlings were determined. Site and thinning produced clear differences, particularly at the end of the growing season. Biomass and cumulative 15N uptake of beech seedlings then increased due to thinning on the NE site and decreased on the SW site. Total N concentrations in leaves, roots and stems of beech seedlings responded similarly. Therefore, growth and N status of beech seedlings are found to be favoured by thinning under cool-moist conditions. However, under higher temperature and reduced water availability—conditions that are prognosticated in the near future—thinning reduces N uptake and plant N concentration and, thus, impairs N balance and growth of beech regeneration.  相似文献   

15.
The degree to which rising atmospheric CO(2) will be offset by carbon (C) sequestration in forests depends in part on the capacity of trees and soil microbes to make physiological adjustments that can alleviate resource limitation. Here, we show for the first time that mature trees exposed to CO(2) enrichment increase the release of soluble C from roots to soil, and that such increases are coupled to the accelerated turnover of nitrogen (N) pools in the rhizosphere. Over the course of 3 years, we measured in situ rates of root exudation from 420 intact loblolly pine (Pinus taeda L.) roots. Trees fumigated with elevated CO(2) (200 p.p.m.v. over background) increased exudation rates (μg C cm(-1) root h(-1) ) by 55% during the primary growing season, leading to a 50% annual increase in dissolved organic inputs to fumigated forest soils. These increases in root-derived C were positively correlated with microbial release of extracellular enzymes involved in breakdown of organic N (R(2) = 0.66; P = 0.006) in the rhizosphere, indicating that exudation stimulated microbial activity and accelerated the rate of soil organic matter (SOM) turnover. In support of this conclusion, trees exposed to both elevated CO(2) and N fertilization did not increase exudation rates and had reduced enzyme activities in the rhizosphere. Collectively, our results provide field-based empirical support suggesting that sustained growth responses of forests to elevated CO(2) in low fertility soils are maintained by enhanced rates of microbial activity and N cycling fuelled by inputs of root-derived C. To the extent that increases in exudation also stimulate SOM decomposition, such changes may prevent soil C accumulation in forest ecosystems.  相似文献   

16.
Elevated nitrogen deposition has increased tree growth, the storage of soil organic matter, and nitrate leaching in many European forests, but little is known about the effect of tree species and nitrogen deposition on nitrous oxide emission. Here we report soil N2O emission from European beech, Scots pine and Norway spruce forests in two study areas of Germany with distinct climate, N deposition and soils. N2O emissions and throughfall input of nitrate and ammonium were measured biweekly during growing season and monthly during dormant season over a 28 months period. Annual N2O emission rates ranged between 0.4 and 1.3 kg N ha?1 year?1 among the stands and were higher in 1998 than in 1999 due to higher precipitation during the growing season of 1998. A 2-way-ANOVA revealed that N2O fluxes were significantly higher (p<0.001) at Solling than at Unterlüß while tree species had no effect on N2O emissions. Soil texture and the amount of throughfall explained together 94% of the variance among the stands, indicating that increasing portions of silt and clay may promote the formation of N2O in wet forest soils. Moreover, cumulative N2O fluxes were significantly correlated (r2 = 0.60, p<0.001) with cumulative NO 3 ? fluxes at 10 cm depth as an indicator of N saturation, however, the slope of the regression curve indicates a rather weak effect of NO 3 ? fluxes on N2O emissions. N input by throughfall was not correlated with N2O emissions and only 1.6–3.2% of N input was released as N2O to the atmosphere. Our results suggest that elevated N inputs have little effect on N2O emissions in beech, spruce and pine forests.  相似文献   

17.
紫色土菜地生态系统土壤N2O排放及其主要影响因素   总被引:3,自引:0,他引:3  
于亚军  王小国  朱波 《生态学报》2012,32(6):1830-1838
应用静态箱/气相色谱法对种菜历史超过20a的紫色土菜地进行了一年N2O排放的定位观测, 分析了菜地N2O排放特征及施氮、土壤温度、土壤湿度和蔬菜参与对N2O排放的影响. 结果表明, 紫色土菜地生态系统在不施氮和施氮(N150kg?hm-2)情况下N2O平均排放通量为50.713.3和168.437.3g?m-2?h-1, N2O排放系数为1.86%. 菜地生态系统N2O排放强度高于当地粮食作物农田,其主要原因在于菜地较高的养分水平和频繁的施肥、浇水等田间管理措施. 从菜地N2O排放总量的季节分配来看, 有64%的N2O排放量来自于土壤水热条件较好的夏秋季蔬菜生长期, 冬春季蔬菜生长期N2O排放量较少, 仅占34%. 因此, 土壤水热条件不同是造成菜地N2O排放量季节分配差异的重要原因. 氮肥对增加N2O排放的效应因蔬菜生育期内单位时间施肥强度不同而异, 蔬菜生育期越短, 施氮对增加N2O排放的效应越明显.不施氮和常规施氮菜地N2O排放通量与地下5cm处土壤温度呈显著的正相关, 但不种蔬菜的空地两者之间的关系不显著, 并且常规施氮菜地土壤温度(T)对N2O排放通量(F)的影响可用指数方程F=11.465e0.032T(R=0.26, p<0.01)表示. 土壤湿度对菜地N2O排放的影响存在阈值效应, 当土壤含水空隙率(WFPS)介于60%-75%时更易引发N2O高排放. 因此, 依据蔬菜生育期特点, 结合土壤水分状况调节施肥量与施肥时间可能会减少菜地N2O排放.  相似文献   

18.
Phytophagous insects can have severe impacts on forested ecosystems in outbreak situations but their contribution to flows of energy and matter is otherwise not so well known. Identifying the role of phytophagous insects in forested ecosystems is partly hindered by the difficulty of combining results from population and community ecology with those from ecosystem ecology. In our study we compared the effects of aphids and leaf-feeding lepidopterous larvae on the epiphytic micro-organisms in the canopies of spruce, beech and oak, and on the vertical flow of energy and nutrients from the canopies down to the forest floor. We particularly searched for patterns resulting from endemic herbivory rather than outbreak situations. Excreta of lepidopterous larvae and aphids promoted the growth of epiphytic micro-organisms (bacteria, yeasts, filamentous fungi) on needles and leaves, which suggests that micro-organisms were energy limited. Leachates from needles and leaves of infested trees contained higher concentrations of dissolved organic C and lower concentrations of NH4-N and NO3-N, relative to uninfested trees. The seasonal abundance of herbivores and micro-organisms significantly affected the dynamics of throughfall chemistry; for instance, concentrations of inorganic N were lower underneath infested than uninfested trees during June and July. There was little difference between the chemistry of soil solutions collected from the forest floor beneath infested and uninfested trees. Thus, under moderate to low levels of infestation the effects of above-ground herbivory seems to be obscured in the soil through buffering biological processes.  相似文献   

19.
Precipitation as a key determinant of forest productivity influences forest ecosystems also indirectly through alteration of the nutrient status of the soil, but this interaction is not well understood. Along a steep precipitation gradient, we studied the consequences of reduced precipitation for the soil and biomass nutrient pools and dynamics in 14 mature European beech (Fagus sylvatica L.) forests on Triassic sandstone. We tested the hypotheses that lowered summer precipitation (1) is associated with less acid soils and (2) a reduced accumulation of organic matter on the forest floor, and (3) reduces nutrient supply from the soil and leads to decreasing foliar and root nutrient concentrations. Soil acidity, the amount of forest floor organic matter, and the associated organic matter N and P pools decreased to about a half from wet to dry sites; the C/P and N/P ratios, but not the C/N ratio, of forest floor organic matter were reduced as well. Net N mineralization and P and K pools in the mineral soil did not change with decreasing precipitation. Foliar P and K concentrations (beech sun leaves) increased while N remained constant, resulting in decreasing foliar N/P and N/K ratios. Estimated N resorption efficiency increased toward the dry sites. We conclude that a reduction in summer rainfall significantly reduces the soil C, N and P pools but does not result in decreasing foliar N and P contents in beech. However, the decreasing foliar N/P ratios towards the dry stands indicate that the importance of P limitation for tree growth declines with decreasing precipitation.  相似文献   

20.
The rhizosphere is a hot-spot for biogeochemical cycles, including production of greenhouse gases, as microbial activity is stimulated by rhizodeposits released by roots and mycorrhizae. The biogeochemical cycle of nitrogen (N) in soil is complex, consisting of many simultaneously occurring processes. In situ studies investigating the effects of roots and mycorrhizae on gross N turnover rates are scarce. We conducted a 15N tracer study under field conditions in a spruce forest on organic soil, which was subjected to exclusion of roots and roots plus ectomycorrhizae (ECM) for 6 years by trenching. The forest soil had, over the 6-year period, an average emission of nitrous oxide (N2O) of 5.9 ± 2.1 kg N2O ha?1 year?1. Exclusion of roots + ECM nearly tripled N2O emissions over all years, whereas root exclusion stimulated N2O emission only in the latest years and to a smaller extent. Gross mineralization–ammonium (NH4 +) immobilization turnover was enhanced by the presence of roots, probably due to high inputs of labile carbon, stimulating microbial activity. We found contrasting effects of roots and ECM on N2O emission and mineralization, as the former was decreased but the latter was stimulated by roots and ECM. The N2O emission was positively related to the ratio of gross NH4 + oxidation (that is, autotrophic nitrification) to NH4 + immobilization. Ammonium oxidation was only stimulated by the presence of ECM, but not by the presence of roots. Overall, we conclude that plants and their mycorrhizal symbionts actively control soil N cycling, thereby also affecting N2O emissions from forest soils. Consequently, adapted forest management with permanent tree cover avoiding clearcutting could be a means to reduce N2O emissions and potential N leaching; despite higher mineralization in the presence of roots and ECM, N2O emissions are decreased as the relative importance of NH4 + oxidation is decreased, mainly due to a stimulated microbial NH4 + immobilization in the mycorrhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号