首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new silver halide-containing holographic recording material has been designed and developed specifically for holographic chemical sensors. The hologram enables very small volume changes to be measured in a polymer layer throughout which the hologram is located. The holographic film is based on a fine-grain silver bromide emulsion suspended in a poly(vinyl alcohol) matrix crosslinked with Cr(III) ions. Cross-linking gives the material sufficient spatial integrity to allow a holographic image to be recorded, while maintaining adequate porosity and elasticity of the polymer matrix for sensing applications. The new material has been characterized with respect to its response to pH and compared with a traditional gelatin holographic film. The response to some ions and small molecules typically found in analytical samples has also been measured. Functional groups introduced covalently into the poly(vinyl alcohol) matrix transform the base matrix into a pH-responsive polymer with predictable swelling properties and which can be further derivatized to incorporate specific ligands. A rationally designed holographic sensor for trypsin has been developed from chemically synthesized artificial polymers. A trypsin substrate, the poly(amino acid) poly(L-lysine), was incorporated into poly(vinyl alcohol) holograms to create a 'designed' holographic material which was degraded in a concentration-dependent manner by trypsin. Extensions of this approach to other hydrolytic enzymes are briefly discussed.  相似文献   

2.
A series of poly(vinyl alcohol) amphiphilic derivatives have been prepared to obtain polymeric aggregates in aqueous phase holding thermodynamic instability. The aim was to evaluate their ability to interact with tumor cells eliciting selective cytotoxicity. The poly(vinyl alcohol) derivatives were prepared by partial substitution of poly(vinyl alcohol) (MW 10 kDa) with both oleyl chains and poly(ethylene glycol) monoethyl ethers (PEGMEE) of different molecular weights. The substitution degree was 1.5% for the oleyl chains and 1% for the PEGMEE chains (moles of substituent per 100 mol of hydroxyvinyl monomer). The polyvinyl derivatives obtained easily dissolved in water. Dynamic and static light scattering measurements on the polymer aqueous solutions indicated the formation of polymeric aggregates characterized by low polydispersity (0.232-0.299) and mean size (218-382 nm) in the range suitable for intravenous administration. Moreover, they were characterized by different packing densities and thermodynamic instabilities driving the polymers to interact with hydrophobic membranes. Among the analyzed polymers, the poly(vinyl alcohol)-co-oleylvinyl ether substituted with triethylene glycol monoethyl ether (P10(4)) provided in solution the highest affinity for hydrophobic membranes. P10(4), moreover, was the most cytotoxic toward the tumor cell lines analyzed (neuroblastoma: SH-SY5Y, IMR-32, HTLA-230. melanoma: MZ2-MEL, RPMI7932.), while it did not appreciably alter the viability of the normal resting lymphocytes. The peculiar behavior of the P10(4) aggregates has been correlated to their high thermodynamic instability in solution due to the high packing density that triggers the polymeric aggregates to interact with hydrophobic membranes such as the tumor cell membranes, thus eliciting cytotoxicity.  相似文献   

3.
This study reports a novel biopolymeric matrix fabricated by chemically cross-linking poly (vinyl alcohol) with silk sericin protein obtained from cocoons of the tropical tasar silkworm Antheraea mylitta. Glutaraldehyde was used as a cross-linking agent with hydrochloric acid acting as an initiator. The matrices were biophysically characterized and the cytocompatibility of the matrices was evaluated for their suitability as biomaterials. The surface morphology was assessed using atomic force microscopy while the changes taking place after cross-linking were confirmed by Fourier transform infrared spectroscopy. The enhanced thermal stability of the constructs was assessed by thermogravimetric and differential scanning calorimetry. Fourier transform infrared spectroscopy analysis showed that sericin was chemically cross-linked with poly (vinyl alcohol) using glutaraldehyde. Silk sericin protein demonstrated a favorable effect on animal cell culture by successfully improving the adhering and spreading of cells on the poorly adhering surface of poly (vinyl alcohol). Confocal microscopy revealed cell spreading and actin filament development in sericin/poly (vinyl alcohol) hydrogel matrices. These findings prove the potential of non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices to be used as biocompatible and biopolymeric material for tissue-engineering and biotechnological applications.  相似文献   

4.
A series of poly(vinyl alcohol) of different commercial grades were prepared and applied onto the surfaces of cotton and blends of cotton/polyester fibers. The molecular structure was confirmed using Fourier Transform Infrared spectroscopy. Physicochemical properties such as viscosity and solid contents (%) were determined and discussed. Factors affecting the performance properties of the finished substrate such as post-treatment with poly(vinyl alcohol) of different grades, concentration and dilutions were studied. Fixation of the poly(vinyl alcohol) onto/or within the cellulose structure is accompanied by the formation of semi-inter-penetrated network structure thereby enhancing the association as well as providing very high stiffness. The results revealed that applications of poly(vinyl alcohol) on the textile fabrics in the finishing processes enables to enhance the stiffness as well as helps to improve its pilling resistance.  相似文献   

5.
Electronic absorption spectra of flavomononucleotide (FMN) in poly(vinyl alcohol) films (PVA) were measured over the concentrations ranging from 6.9 x 10(-4) to 6.8 x 10(-1) M and temperatures from 263 to 338 K.The FMN absorption spectra measurements performed at room temperature have shown two ranges of different changes as a function of dye concentration. For concentrations c<10(-1) M (range I) the spectra exhibited regular changes showing an isosbestic point, which evidences the equilibrium between monomers and dimers. However, for range II (c>1.05 x 10(-1) M) the FMN absorption spectra occurred to be almost independent of concentration and they nearly overlapped with the dimer spectrum (within the error limit).Temperature measurements have shown that the FMN absorption spectra in PVA are stable over a wide temperature range.The mean distances between FMN molecules in PVA films are calculated. For maximal concentrations (from the range II), they are below 13.1 A, whereas the mean dimensions of FMN monomers and dimers are 15.8 and 21.1 A, respectively, which indicates that the orientation of dimers and monomers in the PVA film cannot be random at high concentrations. Molecules are partly ordered, adopting approximately parallel orientation, which is in agreement with the calculations of dimer structure by molecular modelling method (MMM).  相似文献   

6.
An esterase catalyzing the hydrolysis of acetyl ester moieties in poly(vinyl alcohol) was purified 400-fold to electrophoretic homogeneity from the cytoplasmic fraction of Pseudomonas vesicularis PD, which was capable of assimilating poly(vinyl alcohol) as the sole carbon and energy source. The purified enzyme was a homodimeric protein with a molecular mass of 80 kDa and the isoelectric point was 6.8. The pH and temperature optima of the enzyme were 8.0 and 45°C. The enzyme catalyzed the hydrolysis of side chains of poly(vinyl alcohol), short-chain p-nitrophenyl esters, 2-naphthyl acetate, and phenyl acetate, and was slightly active toward aliphatic esters. The enzyme was also active toward the enzymatic degradation products, acetoxy hydroxy fatty acids, of poly(vinyl alcohol). The K m and V max of poly(vinyl alcohol) (degree of polymerization, 500; saponification degree, 86.5-89.0 mol%) and p-nitrophenyl acetate were 0.381% (10.6 mM as acetyl content in the polymer) and 2.56 μM, and 6.52 and 12.6 μmol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate at a concentration of 5 mM, which indicated that the enzyme was a serine esterase. The pathway for the metabolism of poly(vinyl alcohol) is also discussed.  相似文献   

7.
T Y Teng  H W Huang  G A Olah 《Biochemistry》1987,26(25):8066-8072
A previous extended X-ray absorption fine structure (EXAFS) study of photolyzed carboxymyoglobin (MbCO) [Chance, B., Fischetti, R., & Powers, L. (1983) Biochemistry 22, 3820-3829; Powers, L., Sessler, J. L., Woolery, G. L., & Chance, B. (1984) Biochemistry 23, 5519-5523] has provoked much discussion on the heme structure of the photoproduct (MbCO). The EXAFS interpretation that the Fe-CO distance increases by no more than 0.05 A following photodissociation has been regarded as inconsistent with optical, infrared, and magnetic susceptibility studies [Fiamingo, F. G., & Alben, J. O. (1985) Biochemistry 24, 7964-7970; Sassaroli, M., & Rousseau, D. L. (1986) J. Biol. Chem. 261, 16292-16294]. The present experiment was performed with well-characterized dry film samples in which MbCO molecules were embedded in a poly(vinyl alcohol) matrix [Teng, T. Y., & Huang, H. W. (1986) Biochim. Biophys. Acta 874, 13-18]. The sample had a high protein concentration (12 mM) to yield adequate EXAFS signals but was very thin (40 micron) so that complete photolysis could be easily achieved by a single flash from a xenon lamp. Although the electronic state of MbCO resembles that of deoxymyoglobin (deoxy-Mb), direct comparison of EXAFS spectra indicates that structurally MbCO is much closer to MbCO than to deoxy-Mb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This paper describes the construction of a sensor for the direct monitoring of a recombinant protein, the human insulin analogue (MI3). The surface plasmon resonance (SPR) sensor incorporates an immobilised, sterilisable affinity-ligand that has been designed to bind to MI3. In practice, gold SPR devices were fabricated with; a 2D assembly of ethanethiol-modified ligand, a 2D mixed-assembly of ethanethiol-modified ligand and mercaptoethanol, a 3D coating of ligand-modified terminal-thiolated poly(vinyl)alcohol (PVA) or a 3D hydrogel of dextran coupled to a self-assembled monolayer (SAM) of mercaptohexaneundecanl-ol. Routine measurement of the concentration MI3 in the concentration range 1-100 mg/l in pilot-scale samples of crude fermentation broth have been achieved with high sensitivity levels and a high signal-to-noise ratio. Analysis can be achieved within < 10 min with the active surface being regenerable for at least 60 cycles over a 6 month period. The coupling of a robust, sterilisable and highly-selective sensor-coating with suitable transducer technologies promises to deliver sensors that are capable of direct in situ monitoring of biopharmaceuticals in industrial bioprocesses.  相似文献   

9.
Using cyclic voltammetry the electrochemical polymerization of protoporphyrin (PP) and iron protoporphyrin (FePP) was investigated as radical cationic vinyl polymerization. A number of factors, such as electrode potential, temperature, and concentration of monomers in solution, may affect the rate of polymerization. The polymerized porphyrin film on electrode surface was analyzed with electronic scanning microscope, UV-visible spectroscope, and ESCA. The electrochemically polymerized FePP film glassy carbon electrode (poly(FePP)/GC) exhibits very high catalytic activity for dioxygen reduction in aqueous solution to water as a four-electron irreversible process.  相似文献   

10.
Photochemical reaction of poly(vinyl alcohol) bearing aromatic azido groups was applied for immobilization of beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21.) in poly(vinyl alcohol) film. Photo-crosslinking and immobilization reactions proceeded by light irradiation for 25 min in air. The immobilized enzyme showed approx. 40% of its native enzyme activity with an apparent Michaelis constant of 3.9 mM. The Michaelis constant of the native enzyme was 2.3 mM. Some properties of the immobilized and native enzyme are compared.  相似文献   

11.
An ethanol biosensor based on electrogenerated chemiluminescence detection was developed. Electrogenerated chemiluminescence reagent tris(2,2'-bipyridyl)ruthenium (II) and alcohol dehydrogenase were immobilized in the same sol-gel hybrid film. The copolymer poly(vinyl alcohol) with 4-vinylpyridine and cation exchanger Nafion were incorporated into sol-gel film to provide the microenvironment for retaining the activity of enzyme and immobilize tris(2,2'-bipyridyl)ruthenium (II). The design was simpler than the previous two-layer format. The experimental conditions, such as scan rate, pH and concentration of the cofactor were investigated. The intensity of electrogenerated chemiluminescence increased linearly with ethanol concentration from 2.5x10(-5) to 5.0x10(-2) M and detection limit was 1.0x10(-5) M. The prepared biosensor exhibited high sensitivity, wide linear range and good stability.  相似文献   

12.
Poly(ethyleneimine) was immobilized on poly(vinyl alcohol)-coated nylon flat sheet membranes, poly(vinyl alcohol) and poly(ethylenevinyl alcohol) hollow fibre membranes as well as Sepharose 4B. The resulting poly(ethyleneimine)-immobilized adsorbers were used for removal of E. coli derived endotoxin from buffers and bovine serum albumin solutions. The efficiency of poly(ethyleneimine) proved to be constant over a wide pH range, including phosphate buffered saline. The performance depended upon the matrix type employed: endotoxin clearance factors varied from 100 to 120 000 in protein-free solutions and 40 to 33 000 in solutions of bovine serum albumin using 6000 EU/ml as feed concentration. The best adsorber was the flat sheet membrane-immobilized poly(ethyleneimine), followed by the hollow fibre-immobilized poly(ethyleneimine) and poly(ethyleneimine)-Sepharose. The factors influencing endotoxin clearance were the mass transport (convective systems were superior to the diffusive system), the chemical composition and the surface structure of the underlying matrix.  相似文献   

13.
In this study it was investigated whether hydrogels could be used for an accommodating lens. The requirements of such a hydrogels are a low modulus, high refractive index, transparency, and strength. Since conventional hydrogels do not possess this combination of properties, a novel preparation method and new polymers are introduced. As starting materials poly(1-hydroxy-1,3-propanediyl), poly(ethylene-co-vinyl alcohol), poly(vinyl alcohol), and poly(allyl alcohol) were used. The first three were cross-linked with a number of diisocyanate compounds. Network formation was performed at low concentrations in a good solvent. Mixing of the polymer solution and cross-linker appeared to be crucial for transparency. Poly(1-hydroxy-1,3-propanediyl), cross-linked with a slow reacting diisocyanate block, shows the most promising properties with respect to refractive index, transparency, tensile strength, and modulus. Poly(allyl alcohol) hydrogel was made by compression molding. The hydrogel was transparent and had a high refractive index and low modulus. It was concluded that hydrogels could be used as accommodating lens material.  相似文献   

14.
The aim of this study was to entrap delta-sleep inducing peptide (DSIP) in cross-linked poly(vinyl alcohol)-based hydrogels of different structures and to determine kinetics of the peptide release from these hydrogels using an in vitro model. Isotropic and macroporous hydrogels based on poly(vinyl alcohol) acrylic derivative (Acr-PVA) and also macroporous epoxy groups containing hydrogels synthesized by copolymerization of this macromer and glycidyl methacrylate, have been used in this study. Isotropic hydrogels were prepared at positive temperatures while macroporous ones were obtained by formation in cryo-conditions. The peptide was entrapped into macroporous PVA hydrogels by adding the peptide solution onto preformed matrices, while peptide immobilization on PVA-GMA hydrogels, containing free epoxy groups, was carried out by sorption of peptide from its aqueous solution. In the case of DSIP entrapment into isotropic PVA gel the peptide solution was added into the polymer mixture at hydrogel formation. The kinetics of peptide release from hydrogels was studied by incubating matrices in PBS solution (pH 7.4), in physiological solution (0.9% NaCl) and in water. DSIP concentration in supernatants was determined by reverse-phase HPLC. Incubation of macroporous PVA gels in PBS, 0.9% NaCl, and water for 30 min caused release of 74, 70, and 64% DSIP, respectively, and this processes completed within 3 h. From hydrogel containing epoxy groups the release of neither peptide nor its degradation products was observed even after incubation for 48 h. For freshly prepared isotropic hydrogel the release kinetics was as follows: 27 and 78% DSIP were released within first 30 min and 33 h, relatively. For the lyophilized hydrogel samples the peptide release was 63% after incubation for 30 min, while drying of samples at room temperature for 3 days caused significant peptide loss because of its structure damage.  相似文献   

15.
The novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers (rGO@m‐MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m‐MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross‐linker in traditional molecularly imprinted polymer, here, 3,4‐dichlorobenzidine was employed as dummy molecular and poly(ethylene‐co‐vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography‐mass spectrometry (GC‐MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035–0.0070 µg l−1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Summary A biosensor system for continuous on-line monitoring of hydrogen peroxide concentration was developed employing catalase and a poly(vinyl alcohol)/poly(tetra fluoro ethylene) bilayer membrane system, Catalase was entrapped between poly(vinyl alcohol) membrane layer and poly(tetra fluoro ethylene) membrane layer outside of the galvanic type DO probe. Since poly(vinyl alcohol) membrane has non-porous, hydrophilic characteristics, the difference in hydrogen peroxide concentration between inside and outside of the membrane was therefore approximately 100 times. The developed hydrogen peroxide sensor has a wide linear range of hydrogen peroxide sensing more than 140 mM and favourable dynamic response characteristics. The sensor showed also good operational stability, rapid response time, and long life time.  相似文献   

17.
Transparent and bendable regenerated cellulose films prepared from aqueous alkali (NaOH or LiOH)/urea (AU) solutions exhibit high oxygen barrier properties, which are superior to those of conventional cellophane, poly(vinylidene chloride), and poly(vinyl alcohol). Series of AU cellulose films are prepared from different cellulose sources (cotton linters, microcrystalline cellulose powder, and softwood bleached kraft pulp) for different dissolution and regeneration conditions. The oxygen permeabilities of these AU cellulose films vary widely from 0.003 to 0.03 mL μm m(-2) day(-1) kPa(-1) at 0% relative humidity depending on the conditions used to prepare the films. The lowest oxygen permeability is achieved for the AU film prepared from 6 wt % cellulose solution by regeneration with acetone at 0 °C. The oxygen permeabilities of the AU cellulose films are negatively correlated with their densities, and AU films prepared from solutions with high cellulose concentrations by regeneration in a solvent at low temperatures generally have low oxygen permeabilities. The AU cellulose films are, therefore, promising biobased packaging materials with high-oxygen barrier properties.  相似文献   

18.
《Process Biochemistry》2014,49(3):380-385
A microbial biosensing system for detection of hydrogen sulfide has been developed by using immobilized Thiobacillus thioparus TK-m in poly vinyl alcohol matrix, together with a dissolved oxygen sensor. Parameters of immobilization (poly vinyl alcohol concentration and amount of wet cell) were optimized by using statistical software. The obtained values for concentration of poly vinyl alcohol and wet cell weight were 11.3% (w/v) and 45 mg, respectively, where the response time of biosensor was 80 s. Calibration of oxygen concentration based on hydrogen sulfide concentration was investigated between 1 mg/L and 20 mg/L. The effect of pH and temperature were investigated in specific range of experimental conditions as well. Some parameters including operational stability and detection limit were studied in detail for characterization of biosensing system. In order to determine the operational stability, bio-sensing system at optimized working conditions was used to distinguish viability of microorganisms in polymer beads in period of time.  相似文献   

19.
Hussels M  Brecht M 《Biochemistry》2011,50(18):3628-3637
Single-molecule spectroscopy at cryogenic temperatures was used to examine the impact of buffer solution, glycerol/buffer mixtures (25% and 66%), and poly(vinyl alcohol) (PVA) films on the conformation of photosystem I (PSI) from Thermosynechoccocus elongatus. PSI holds a number of chromophores embedded at different places within the protein complex that show distinguishable fluorescence at low temperatures. The fluorescence emission from individual complexes shows inter- and intracomplex heterogeneity depending on the solution wherein PSI was dissolved. Statistical evaluation of spectra of a large number of complexes shows that the fluorescence emission of some of these chromophores can be used as sensors for their local nanoenvironment and some as probe for the conformation of the whole protein complex. Preparation in glycerol/buffer mixtures yields a high homogeneity for all chromophores, indicating a more compact protein conformation with less structural variability. In buffer solution a distinct heterogeneity of the chromophores is observed. PSI complexes in PVA show highly heterogeneous spectra as well as a remarkable blue shift of the fluorescence emission, indicating a destabilization of the protein complex. Photosystem I prepared in PVA cannot be considered fully functional, and conclusions drawn from experiments with PSI in PVA films are of questionable value.  相似文献   

20.
In this communication, we describe a simple and robust method for the covalent bonding of poly(vinyl alcohol) (PVA) on a silanized poly(dimethylsiloxane) (PDMS) surface. Nonspecific adsorption of proteins via hydrophobic-hydrophobic interactions of the PVA-coated surface is greatly reduced, and biomolecules can be rapidly anchored on the PVA-coated surface with high loading and uniformity. On the basis of a sandwich immunoassay with the anti-rabbit IgG and IgG pair as a model, the detection limit for IgG is down to 1 pg/mL with linearity up to 11 microg the levels often encountered in biological, forensic, and environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号