首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemic preconditioning (IPC) not only reduces local tissue injury caused by subsequent ischemia-reperfusion (IR) but may also have a beneficial effect on IR injury of tissues remote from those undergoing preconditioning. In this study, we investigated the effect of small intestinal IPC on renal IR injury in rats. Renal IR injury was induced by a 45-min renal artery occlusion and reperfusion for 2 or 24 h in rats with a previous contralateral nephrectomy, and ischemic preconditioning was induced by 3 cycles of 8-min ischemia and 5-min reperfusion of the small intestine. We then measured the concentrations of plasma creatinine (Cr) and blood urine nitrogen (BUN) and the level of malondialdehyde (MDA) and activities of superoxide dismutase (SOD) and catalase (CAT) in the renal cortex. Renal histopathology also was evaluated. Pretreatment with intestinal ischemic preconditioning significantly alleviated renal IR injury, as shown by decreases in the levels of Cr, BUN, and MDA, decreased renal morphologic change, and improved preservation of SOD and CAT activities. These results suggest that remote ischemic preconditioning of the small intestine protects against renal IR injury by inhibition of lipid peroxidation and preservation of antioxidant enzyme activities.  相似文献   

2.
Liu KX  Li C  Li YS  Yuan BL  Xu M  Xia Z  Huang WQ 《Proteomics》2010,10(24):4463-4475
Intestinal ischemia/reperfusion (I/R) injury is a critical condition associated with high morbidity and mortality. Studies show that ischemic preconditioning (IPC) can protect the intestine from I/R injury. However, the underlying molecular mechanisms of this event have not been fully elucidated. In the present study, 2-DE combined with MALDI-MS was employed to analyze intestinal mucosa proteomes of rat subjected to I/R injury in the absence or presence of IPC pretreatment. The protein content of 16 proteins in the intestinal mucosa changed more than 1.5-fold following intestinal I/R. These proteins were, respectively, involved in the cellular processes of energy metabolism, anti-oxidation and anti-apoptosis. One of these proteins, aldose reductase (AR), removes reactive oxygen species. In support of the 2-DE results, the mRNA and protein expressions of AR were significantly downregulated upon I/R injury and enhanced by IPC as confirmed by RT-PCR and western blot analysis. Further study showed that AR-selective inhibitor epalrestat totally turned over the protective effect of IPC, indicating that IPC confers protection against intestinal I/R injury primarily by increasing intestinal AR expression. The finding that AR may play a key in intestinal ischemic protection might offer evidences to foster the development of new therapies against intestinal I/R injury.  相似文献   

3.
The aim of this study was to evaluate in vivo whether nitric oxide (NO) is able to diffuse from blood into tissues and vice versa from tissues into blood. We used an in vivo model of intestinal ischemia (superior mesenteric artery occlusion) selectively increasing NO levels in intestinal tissue and an infusion of L-arginine selectively increasing NO levels in blood. In this model we followed formation of nitrosyl complexes of hemoglobin (Hb-NO) in blood and nitrosyl-diethyldithiocarbamate-iron complexes (DETC--Fe--NO) in ischemic intestine and normoxic tissues by means of electron paramagnetic resonance spectroscopy. NO trapping by DETC--Fe in the tissues resulted in a reduction of Hb--NO levels in blood accompanied by the formation of water-insoluble DETC--Fe-NO complexes in ischemic intestine and normoxic tissues both during ischemia and during reperfusion. Administration of L-arginine increased NO levels in blood but neither in ischemic intestine nor in normoxic tissue. Our data suggest that NO released in blood from endothelial cells does not diffuse into tissue. In contrast, NO formed in tissue diffuses into blood. The latter indicates that NO formed in tissues may exert its biological activities systematically.  相似文献   

4.
The aim of this study was to investigate the efficacy and mechanism of action of a noninvasive remote ischemic preconditioning (IPC) technique for the protection of multiple distant skeletal muscles against ischemic necrosis (infarction). It was observed in the pig that three cycles of 10-min occlusion and reperfusion in a hindlimb by tourniquet application reduced the infarction of latissimus dorsi (LD), gracilis (GC), and rectus abdominis (RA) muscle flaps by 55%, 60%, and 55%, respectively, compared with their corresponding control (n = 6, P < 0.01) when they were subsequently subjected to 4 h of ischemia and 48 h of reperfusion. This infarct-protective effect of remote IPC in LD muscle flaps was abolished by an intravenous bolus injection of the nonselective opioid receptor antagonist naloxone (3 mg/kg) 10 min before remote IPC and a continuous intravenous infusion (3 mg/kg) during remote IPC and by an intravenous bolus injection of the selective delta 1-opioid receptor antagonist 7-benzylidenealtrexone maleate (3 mg/kg). However, this infarct-protective effect of remote IPC was not affected by an intravenous bolus injection of the ganglionic blocker hexamethonium chloride (20 mg/kg) or the nonspecific adenosine receptor antagonist 8-(p-sulfophenyl)theophylline (10 mg/kg) or by a local intra-arterial injection of the adenosine1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (3 mg/muscle flap) given 10 min before remote IPC. It was also observed that this remote IPC of skeletal muscle against infarction was associated with a slower rate of muscle ATP depletion during the 4 h of sustained ischemia and a reduced muscle neutrophilic myeloperoxidase activity after 1.5 h of reperfusion. These observations led us to speculate that noninvasive remote IPC by brief cycles of occlusion and reperfusion in a pig hindlimb is effective in global protection of skeletal muscle against infarction. This infarct-protective effect is most likely triggered by the activation of opioid receptors in the skeletal muscle, and remote IPC is associated with an energy-sparing effect during sustained ischemia and attenuation of neutrophil accumulation during reperfusion.  相似文献   

5.
We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that K(ATP) channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 +/- 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 +/- 3, 26 +/- 1, 23 +/- 2, 24 +/- 2 and 24 +/- 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively (P < 0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal K(ATP) (sK(ATP)) channel opener P-1075 (2 microg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 +/- 4% (ischemic control) to 24 +/- 2 and 19 +/- 3%, respectively (P < 0.05, n = 8). Intravenous injection of the sK(ATP) channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific K(ATP) channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial K(ATP) (mK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher (P < 0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower (P < 0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sK(ATP) and mK(ATP) channels play a central role in the trigger and mediator mechanism, respectively.  相似文献   

6.
本文旨在研究细胞色素c在后处理抗大鼠肠缺血-再灌注损伤细胞凋亡中的变化。将Sprague-Dawley大鼠32只随机分为4组(n=8):假手术(Sham)组、缺血-再灌注(I/R)组、缺血预处理(IPC)组、缺血后处理(IPOST)组。应用激光共聚焦扫描显微镜检测各组大鼠肠黏膜细胞线粒体跨膜电位的变化。用Western blot方法检测肠黏膜细胞线粒体内细胞色素c及caspase-3表达的变化。末端脱氧核苷酸转移酶介导的dUTP缺口末端标记法(TUNEL)和DNA琼脂糖凝胶电泳方法检测大鼠肠黏膜细胞凋亡发生情况。实验结果显示,与缺血-再灌注组相比,缺血后处理组大鼠肠黏膜细胞线粒体跨膜电位显著升高(P0.05),线粒体内细胞色素c蛋白表达水平显著增加(P0.05),caspase-3蛋白表达降低(P0.05),细胞凋亡率明显降低(P0.05)。缺血后处理组与缺血预处理组相比各项指标差异无统计学意义(P0.05)。上述结果提示缺血后处理可通过阻止线粒体释放细胞色素c抑制凋亡发生,减轻大鼠肠缺血-再灌注损伤。  相似文献   

7.
Ischemic-reperfusion (IR) injury of the small intestine makes a serious complications associated with various surgical procedures and is related to changes in motility, secretory activity and structural alterations. Preconditioning can reduce range of this damage. The aim of the experimental study was to determine the influence of ischemic preconditioning (IPC) on IR injury on jejunal epithelial layer. Wistar rats (n = 56) were divided in two experimental groups. IR group was subjected to 60 min ischemia of cranial mesenteric artery and followed by reperfusion periods: 1,4,8,24 h (IR1, IR4, IR8, IR24). Group with ischemic preconditioning (IPC+IR) was subjected to two subsequent ischemic attacks (12 min) with 10 min of reperfusion between them, and after 2nd attack ischemia was induced for 60 min followed by relevant reperfusion period. IPC showed the protective impact on the jejunal tissue architecture after 1 h reperfusion, when in IR1 group the highest and significant damage was observed (p < 0.001) in contrast to IPC+IR1 group. Histopathological damage of the intestine in pretreated groups was postponed to 4 h of reperfusion. Protective effect of IPC together with later accumulation of injury signs were confirmed by weaker impact on goblet cell (p < 0.001) and Paneth cell populations (p < 0.05).The increased cells proliferation in preconditioned groups came later, but stronger after 8 h of reperfusion (p < 0.001) and after 24 h of reperfusion still remained at the high activity level (p < 0.001). Our experimental results on the histopathological changes in the jejunum during ischemic preconditioning proved that IPC may have a positive effect on maintaining intestinal barrier function.  相似文献   

8.
Ischemic preconditioning (IPC) protects the heart against subsequent sustained ischemia reperfusion (RP). Despite many triggers and signaling pathways, which seem to be involved in IPC, the IPC-mechanisms remain a controversial issue. One of them is endogenous production of nitric oxide (NO). To assess the role of NO in IPC and its relation with glycogen and glycolysis, the effects of inhibiting NO synthase with L-NAME (50 microM) were examined in IPC rat hearts perfused with medium containing 10 mM glucose. Left ventricular developed pressure-rate product (RPP) and end diastolic pressure (EDP), lactate and glycogen contents, and cell viability were measured. Global ischemia (25 min) was followed by 30 min RP. IPC consisted in one cycle of 3 min ischemia-5 min RP. IPC reduced EDP and improved RP recovery of RPP. L-NAME had no effects on the non-IPC group but abolished these effects of IPC. IPC reduced ischemic decrease of glycogen and the acceleration of glycolysis, and improved cell viability. L-NAME did not affect these effects of IPC. The results suggest that NO is ineffective on the noxious effects of ischemia-RP in non-IPC hearts and on the effects of IPC on cell viability, glycogenolysis and glycolysis whereas it is only involved in functional protection.  相似文献   

9.
Whether ischemic postconditioning (IPC) can significantly alleviate ischemic injury hinges on the appropriate measure. In this study, the expression RGMa and IL-1β, IL-6 are investigated to estimate the therapeutic benefits of various postconditioning strategies after cerebral ischemia/reperfusion. The study consists of the sham-operated group and five treatment groups: ischemia/reperfusion (I/R), two proximate ischemic postconditioning (IPC-S and IPC-M), remote postconditioning (RIPC) and delayed postconditioning (DIPC) groups. We find that rats in IPC and RIPC groups exhibit significantly less neural deficit and lower infarct volume than that in I/R and DIPC groups after ischemia/reperfusion. Moreover, in ischemic cortex and hippocampus, the mRNA level of RGMa is much lower in IPC and RIPC groups. Immunohistochemical analysis indicates that the expression of RGMa, IL-1β and IL-6 are reduced in IPC and RIPC groups (especially in IPC-S group). Furthermore, neurofilament staining reveals that the rats in IPC and RIPC groups have less axonal injury than that in I/R and DIPC groups. Our studies suggest that the optimal strategy to attenuate cerebral ischemia/reperfusion is achieved by early, short-term, and multiple cycles of proximal IPC. The cerebral protective effect of IPC may be associated with the decreased expression of RGMa and inflammation mediators.  相似文献   

10.
We examined the role of the sarcolemmal and mitochondrial K(ATP) channels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 +/- 1%) versus control (56 +/- 1%). The sarcolemmal K(ATP) channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial K(ATP) channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 +/- 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 +/- 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 +/- 0.30 micromol x min(-1) x mg mitochondrial protein(-1). Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 +/- 0.06 micromol x min(-1) x mg mitochondrial protein(-1). IPC significantly increased ATP synthesis to 1.86 +/- 0.23 micromol x min(-1) x mg mitochondrial protein(-1). However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 +/- 0.15 micromol x min(-1) x mg mitochondrial protein(-1)). These data are consistent with the notion that inhibition of mitochondrial K(ATP) channels attenuates IPC by reducing IPC-induced protection of mitochondrial function.  相似文献   

11.
Ischemic preconditioning (IPC, i.e. increase in the organ resistance to a prolonged ischemia which occurs after a brief ischemic challenge) seems to be one of the most powerful endogenous cardioprotective mechanisms known to date. Current data regarding molecular mechanisms of early (classic) IPC as well as the second window of protection are reviewed in the context of the concept of sequential three-staged development of protective effect. Based on original and published data, possible mechanisms of remote IPC are considered. The review comprises current ideas of existence of the IPC clinical correlates and its use in clinic.  相似文献   

12.
Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.  相似文献   

13.
缺血预适应对大鼠肢体缺血/再灌注后肺损伤的影响   总被引:2,自引:0,他引:2  
目的:观察肢体缺血预适应对大鼠肢体缺血/再灌注(I/R)后肺损伤的影响并探讨其机制。方法:将雄性Wistar大鼠随机分为4组(n=8):对照组(C),肢体缺血/再灌注组(LI/R),缺血预适应组(IPC)和L-NAME组。各组大鼠均于肢体缺血4h再灌注4h处死,分别测定其动脉血氧分压(PaO2)和二氧化碳分压(PaCO2),血浆及肺组织丙二醛(MDA)、一氧化氮(NO)、内皮素(ET)含量,计算血浆NO/ET比值;以及肺湿干比(W/D)、肺系数(LI),肺组织髓过氧化物酶(MPO)含量。结果:大鼠LI/R后4h,PaO2明显降低;W/D、LI、血浆及肺组织的MDA、NO、ET和肺组织MPO活性均明显增加,而血浆NO/ET比值明显减小。与LI/R组比较,IPC组各项损伤指标明显减轻,NO水平升高,血浆NO/ET比值明显增大。与对照组和IPC组比较,L-NAME处理组,各项损伤指标数值明显增加,NO水平降低;血浆NO/ET比值明显减小,差异均具有显著性。各组大鼠PaCO2的变化无显著性。结论:缺血预适应对肢体缺血/再灌注后肺损伤具有保护作用,其机制可能与内源性NO合成增加有关。  相似文献   

14.
Sun J 《生理学报》2007,59(5):544-552
一氧化氮(nitricoxide,NO)作为一种重要的信使分子参与缺血预适应(ischemic preconditioning,IPC)心肌保护。目前普遍认为NO通过经典的NO/cGMP依赖的信号转导途径调节线粒体ATP敏感性钾(ATP-sensitive potassium,KATP通道来发挥其保护作用,然而越来越多的数据表明NO还可能通过蛋白质巯基亚硝基化(S-nitrosylation)来发挥生理功能。蛋白质巯基亚硝基化,即蛋白质半胱氨酸巯基与NO基团形成共价键,是一种氧化还原依赖的蛋白质翻译后可逆修饰。蛋白质巯基亚硝基化不仅可以改变蛋白质的结构和功能,而且还可以阻抑目标半胱氨酸的进一步氧化修饰。IPC增加S-亚硝基硫醇(S-nitrosothi01)含量,引起蛋白质巯基亚硝基化。S-亚硝基硫醇还能发挥药理性预适应作用,抵抗心肌缺血,再灌注损伤。因此,蛋白质巯基亚硝基化是IPC心肌保护的一种重要途径,参与抵抗细胞内氧化应激和亚硝化应激(nitrosative stress)。  相似文献   

15.
目的:观察肢体缺血/再灌注(LI/R)时肺损伤的变化并探讨缺血预处理(IPC)对其保护作用。方法:复制家兔LI/R损伤模型,观察肢体缺血4 h再灌注4 h肺损伤的变化以及采用肢体IPC干预后对肺损伤的影响。从右颈外静脉和左颈总动脉采血,分别代表入肺血和出肺血,检测入、出肺血及肺组织超氧化物歧化酶(SOD)的活性、脂质过氧化物的代谢产物丙二醛(MDA)和一氧化氮(NO)的含量;同时测定肺组织总一氧化氮合酶(tNOS)和诱导型一氧化氮合酶(iNOS)的活性以及肢体IPC对上述指标的影响。结果:与对照组和缺血前比较,LI/R组松夹再灌注4 h入、出肺血及肺组织SOD活性明显降低,MDA和NO含量增高(P〈0.05,P〈0.01);肺组织tNOS和iNOS活性亦升高,与对照组比较,有统计学意义(P〈0.01)。在缺血前给予IPC组,SOD活性升高,而MDA、NO含量降低,tNOS、iNOS活性也降低(P〈0.01)。相关分析显示MDA与SOD间存在明显负相关(P〈0.01),而MDA与NO及iNOS呈显著正相关(P〈0.01)。结论:LI/R时并发的急性肺损伤与组织氧化代谢紊乱有关,IPC通过改善LI/R时肺组织氧化与抗氧化之间的平衡,进而增强肺组织的抗氧化能力,对LI/R肺损伤具有保护作用。  相似文献   

16.
Hu CP  Peng J  Xiao L  Ye F  Deng HW  Li YJ 《Regulatory peptides》2002,107(1-3):137-143
In the present study, we examined whether age-related reduction in cardioprotection of intestinal ischemic preconditioning is related to stimulation of the release and synthesis of calcitonin gene-related peptide (CGRP) in rats. Ischemia-reperfusion injury was induced by a 45-min coronary artery occlusion and 180-min reperfusion, and ischemic preconditioning was induced by six cycles of 4-min ischemia and 4-min reperfusion of the small intestine. The serum concentration of creatine kinase, infarct size, the expression of CGRP isoforms (alpha- and beta-CGRP) mRNA in lumbar dorsal root ganglia and CGRP concentration in plasma were measured. Pretreatment with intestinal ischemic preconditioning for 24 h significantly reduced infarct size and creatine kinase release concomitantly with a significant increase in the expression of alpha-CGRP mRNA, but not beta-CGRP mRNA, and plasma concentrations of CGRP at 6 months of age but not at 24 months of age. These results suggest that the delayed cardioprotective effect of intestinal ischemic preconditioning is decreased in senescent rats, and the age-related change is related to reduction of the synthesis and release of alpha-CGRP.  相似文献   

17.
Nitric oxide (NO) donors mimic the early phase of ischemic preconditioning (IPC). The effects of nitroxyl (HNO/NO(-)), the one-electron reduction product of NO, on ischemia/reperfusion (I/R) injury are unknown. Here we investigated whether HNO/NO(-), produced by decomposition of Angeli's salt (AS; Na(2)N(2)O(3)), has a cardioprotective effect in isolated perfused rat hearts. Effects were examined after intracoronary perfusion (19 min) of either AS (1 microM), the NO donor diethylamine/NO (DEA/NO, 0.5 microM), vehicle (100 nM NaOH) or buffer, followed by global ischemia (30 min) and reperfusion (30 min or 120 min in a subset of hearts). IPC was induced by three cycles of 3 min ischemia followed by 10 min reperfusion prior to I/R. The extent of I/R injury under each intervention was assessed by changes in myocardial contractility as well as lactate dehydrogenase (LDH) release and infarct size. Postischemic contractility, as indexed by developed pressure and dP/dt(max), was similarly improved with IPC and pre-exposure to AS, as opposed to control or DEA/NO-treated hearts. Infarct size and LDH release were also significantly reduced in IPC and AS groups, whereas DEA/NO was less effective in limiting necrosis. Co-infusion in the triggering phase of AS and the nitroxyl scavenger, N-acetyl-L-cysteine (4 mM) completely reversed the beneficial effects of AS, both at 30 and 120 min reperfusion. Our data show that HNO/NO(-) affords myocardial protection to a degree similar to IPC and greater than NO, suggesting that reactive nitrogen oxide species are not only necessary but also sufficient to trigger myocardial protection against reperfusion through species-dependent, pro-oxidative, and/or nitrosative stress-related mechanisms.  相似文献   

18.
We previously demonstrated in the pig that instigation of three cycles of 10 min of occlusion and reperfusion in a hindlimb by tourniquet application (approximately 300 mmHg) elicited protection against ischemia-reperfusion injury (infarction) in multiple distant skeletal muscles subsequently subjected to 4 h of ischemia and 48 h of reperfusion, but the mechanism was not studied. The aim of this project was to test our hypothesis that mitochondrial ATP-sensitive potassium (KATP) (mKATP) channels play a central role in the trigger and mediator mechanisms of hindlimb remote ischemic preconditioning (IPC) of skeletal muscle against infarction in the pig. We observed in the pig that hindlimb remote IPC reduced the infarct size of latissimus dorsi (LD) muscle flaps (8 x 13 cm) from 45 +/- 2% to 22 +/- 3% (n = 10; P < 0.05). The nonselective KATP channel inhibitor glibenclamide (0.3 mg/kg) or the selective mKATP channel inhibitor 5-hydroxydecanoate (5-HD, 5 mg/kg), but not the selective sarcolemmal KATP (sKATP) channel inhibitor HMR-1098 (3 mg/kg), abolished the infarct-protective effect of hindlimb remote IPC in LD muscle flaps (n = 10, P < 0.05) when these drugs were injected intravenously at 10 min before remote IPC. In addition, intravenous bolus injection of glibenclamide (1 mg/kg) or 5-HD (10 mg/kg) at the end of hindlimb remote IPC also abolished the infarct protection in LD muscle flaps (n = 10; P < 0.05). Furthermore, intravenous injection of the specific mKATPchannel opener BMS-191095 (2 mg/kg) at 10 min before 4 h of ischemia protected the LD muscle flap against infarction to a similar extent as hindlimb remote IPC, and this infarct-protective effect of BMS-191095 was abolished by intravenous bolus injection of 5-HD (5 mg/kg) at 10 min before or after intravenous injection of BMS-191095 (n = 10; P < 0.05). The infarct protective effect of BMS-191095 was associated with a higher muscle content of ATP at the end of 4 h of ischemia and a decrease in muscle neutrophilic myeloperoxidase activity at the end of 1.5 h of reperfusion compared with the time-matched control (n = 10, P < 0.05). These observations led us to conclude that mKATP channels play a central role in the trigger and mediator mechanisms of hindlimb remote IPC of skeletal muscle against infarction in the pig, and the opening of mKATP channels in ischemic skeletal muscle is associated with an ATP-sparing effect during sustained ischemia and attenuation of neutrophil accumulation during reperfusion.  相似文献   

19.
Ischemic preconditioning (IPC) has been considered to be a potential therapy to reduce ischemia-reperfusion injury (IRI) since the 1980s. Our previous study indicated that sevoflurane preconditioning (SPC) also reduced intestinal IRI in rats. However, whether the protective effect of SPC is similar to IPC and the mechanisms of SPC are unclear. Thus, we compared the efficacy of SPC and IPC against intestinal IRI and the role of protein kinase C (PKC) and mitochondrial ATP-sensitive potassium channel (mKATP) in SPC. A rat model of intestinal IRI was used in this study. The superior mesenteric artery (SMA) was clamped for 60 min followed by 120 min of reperfusion. Rats with IPC underwent three cycles of SMA occlusion for 5 min and reperfusion for 5 min before intestinal ischemia. Rats with SPC inhaled sevoflurane at 0.5 minimum alveolar concentration (MAC) for 30 min before the intestinal ischemic insult. Additionally, the PKC inhibitor Chelerythrine (CHE) or mKATP inhibitor 5-Hydroxydecanoic (5-HD) was injected intraperitoneally before sevoflurane inhalation. Both SPC and IPC ameliorated intestinal IRI-induced histopathological changes, decreased Chiu’s scores, reduced terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the epithelium, and inhibited the expression of malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α). These protective effects of SPC were similar to those of IPC. Pretreatment with PKC or mKATP inhibitor abolished SPC—induced protective effects by increasing Chiu’s scores, down-regulated the expression of Bcl-2 and activated caspase-3. Our results suggest that pretreatment with 0.5 MAC sevoflurane is as effective as IPC against intestinal IRI. The activation of PKC and mKATP may be involved in the protective mechanisms of SPC.  相似文献   

20.
Ischemic preconditioning (IPC) is a well-known phenomenon in which tissues are exposed to a brief period of ischemia prior to a longer ischemic event. This technique produces tissue tolerance to ischemia reperfusion injury (IRI). Currently, IPC’s mechanism of action is poorly understood. Using a porcine single kidney model, we performed remote IPC with renal IRI and evaluated the IPC mechanism of action. Following left nephrectomy, 15 female Yorkshire pigs were divided into three groups: no IPC and 90 minutes of warm ischemia (control), remote IPC immediately followed by 90 minutes of warm ischemia (rIPCe), and remote IPC with 90 minutes of warm ischemia performed 24 hours later (rIPCl). Differential gene expression analysis was performed using a porcine-specific microarray. The microarray analysis of porcine renal tissues identified 1,053 differentially expressed probes in preconditioned pigs. Among these, 179 genes had altered expression in both the rIPCe and rIPCl groups. The genes were largely related to oxidation reduction, apoptosis, and inflammatory response. In the rIPCl group, an additional 848 genes had altered expression levels. These genes were primarily related to immune response and inflammation, including those coding for cytokines and cytokine receptors and those that play roles in the complement system and coagulation cascade. In the complement system, the membrane attack complex was determined to be sublytic, because it colocalized with phosphorylated extracellular signal-regulated kinase. Furthermore, alpha 2 macroglobulin, tissue plasminogen activator, uterine plasmin trypsin inhibitor, and arginase-1 mRNA levels were elevated in the rIPCl group. These findings indicate that remote IPC produces renoprotective effects through multiple mechanisms, and these effects develop over a long timeframe rather than immediately following IPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号