首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A striking characteristic of the centromeric heterochromatin of Drosophila melanogaster is that each chromosome carries different satellite DNA sequences. Here we show that while the major component of the 1.688 satellite DNA family expands across the centromere of the X chromosome the rest of the minor variants are located at pericentromeric positions in the large autosomes. Immunostaining of prometaphase chromosomes with the kinetocore-specific anti-BUB1 antibody reveals the transient presence of this centromeric protein in all the regions containing the 1.688 satellite.  相似文献   

2.
We have determined the complete nucleotide sequence of the monomer repeating unit of the 1.688 g/cm3 satellite DNA from Drosophila melanogaster. This satellite DNA, which makes up 4% of the Drosophila genome and is located primarily on the sex chromosomes, has a repeat unit 359 base-pairs in length. This complex sequence is unrelated to the other three major satellite DNAs present in this species, each of which contains a very short repeated sequence only 5 to 10 base-pairs long. The repeated sequence is more similar to the complex repeating units found in satellites of mammalian origin in that it contains runs of adenylate and thymidylate residues. We have determined the nature of the sequence variations in this DNA by restriction nuclease cleavage and by direct sequence determination of (1) individual monomer units cloned in hybrid plasmids, (2) mixtures of adjacent monomers from a cloned segment of this satellite DNA, (3) mixtures of monomer units isolated by restriction nuclease cleavage of total 1.688 g/cm3 satellite DNA. Both direct sequence determination and restriction nuclease cleavage indicate that certain positions in the repeat can be highly variable with up to 50% of certain restriction sites having altered recognition sequences. Despite the high degree of variation at certain sites, most positions in the sequence are highly conserved. Sequence analysis of a mixture of 15 adjacent monomer units detected only nine variable positions out of 359 base-pairs. Total satellite DNA showed only four additional positions. While some variability would have been missed due to the sequencing methods used, we conclude that the variation from one repeat to the next is not random and that most of the satellite repeat is conserved. This conservation may reflect functional aspects of the repeated DNA, since we have shown earlier that part of this sequence serves as a binding site for a sequence-specific DNA binding protein isolated from Drosophila embryos (Hsieh &; Brutlag, 1979).  相似文献   

3.
Double-stranded RNA (dsRNA) triggers the destruction of mRNA sharing sequence with the dsRNA, a phenomenon termed RNA interference (RNAi). The dsRNA is converted by endonucleolytic cleavage into 21- to 23-nt small interfering RNAs (siRNAs), which direct a multiprotein complex, the RNA-induced silencing complex to cleave RNA complementary to the siRNA. RNAi can be recapitulated in vitro in lysates of syncytial blastoderm Drosophila embryos. These lysates reproduce all of the known steps in the RNAi pathway in flies and mammals. Here we explain how to prepare and use Drosophila embryo lysates to dissect the mechanism of RNAi.  相似文献   

4.
M Carlson  D Brutlag 《Cell》1978,15(3):733-742
A method for purifying sequences adjacent to satellite DNA in the heterochromatin of D. melanogaster is described. A cloned DNA segment containing part of a copia gene adjacent to 1.688 g/cm3 satellite DNA has been isolated. The copia genes compose a repeated gene family which codes for abundant cytoplasmic poly(a)-containing RNA (Young and Hogness, 1977; Finnegan et al., 1978). We have identified two major poly (A)-containing RNA species [5.2 and 2.1 kilobases (kb)] produced by the copia gene family. The cloned segment contains copia sequences homologous to the 5' end of RNA within 0.65 kb of the 1.688 satellite DNA sequences. Seven different cloned copia genes from elsewhere in the genome have also been isolated, and a 5.2 kb region present in five of the clones was identified as copia by heteroduplex analysis. In addition, three ususual copies of copia were found: a "partial" copy of the gene (3.7 kb) which has one endpoint in common with the 5.2 kb unit; a copia gene flanked on one side by a 1.6 kb sequence and on the other by the same 1.6 kb sequence in the inverted orientation; and a copia gene flanked only on one side by the same sequence.  相似文献   

5.
In the T(1;2)dor var7 multibreak rearrangement the distal 1A-2B segment of the X chromosome of Drosophila melanogaster is juxtaposed to an inverted portion of the heterochromatin of chromosome 2. Analysis of mitotic chromosomes by a series of banding techniques has permitted us precisely to locate the heterochromatic breakpoint of this translocation in the h42 region of 2R. Cloning and sequencing of the eu-heterochromatic junction revealed that the translocated 1A-2B fragment is joined to (AACAC)n repeats, which represent a previously undescribed satellite DNA in D. melanogaster. These repeated sequences have been estimated to account for about 1 Mb of the D. melanogaster genome. The repeats are located mainly in the Y chromosome and in the heterochromatin of the right arm of chromosome 2 (2Rh), where they are colocalized with the Stalker retrotransposon. Received: 3 October 1998 / Accepted: 3 December 1998  相似文献   

6.
7.
8.
9.
The conditional expression of hairpin constructs in Drosophila melanogaster has emerged in recent years as a method of choice in functional genomic studies. To date, upstream activating site-driven RNA interference constructs have been inserted into the genome randomly using P-element-mediated transformation, which can result in false negatives due to variable expression. To avoid this problem, we have developed a transgenic RNA interference vector based on the phiC31 site-specific integration method.  相似文献   

10.
11.
The five satellite DNAs of Drosophila melanogaster have been isolated by the combined use of different equilibrium density gradients and hydrolyzed by seven different restriction enzymes; Hae III, Hind II + Hind III, Hinf, Hpa II, EcoR I and EcoR II. The 1.705 satellite is not hydrolyzed by any of the enzymes tested. Hae III is the only restriction enzyme that cuts the 1.672 and 1.686 satellites. The cleavage products from either of these reactions has a heterogeneous size distribution. Part of the 1.688 satellite is cut by Hae III and by Hinf into three discrete fragments with M.W. that are multiples of 2.3 X 10(5) daltons (approximately 350 base pairs). In addition, two minor bands are detected in the 1.688-Hinf products. The mole ratios of the trimer, dimer and monomer are: 1:6.30 : 63.6 for 1.688-Hae III and 1 : 22.0 : 403 for 1.688-Hinf. Circular mitochondrial DNA (rho = 1.680) is cut into discrete fragments by all of the enzymes tested and molecular weights of these fragments have been determined.  相似文献   

12.
M Carlson  D Brutlag 《Cell》1977,11(2):371-381
The sequence organization of the 1.688 satellite DNA (density 1.688 g/cm3 in CsCl) has been investigated, and this satellite has been found to differ from the other D. melanogaster satellite DNAs in having a much greater sequence complexity. Purification of 1.688 satellite DNA by successive equilibrium density centrifugations yielded a fraction 77% pure. Segments of satellite DNA were isolated by molecular cloning in the plasmid vector pSC101. One recombinant plasmid contained a segment of 1.688 satellite DNA 5.8 kilobase pairs in size and was stable during propagation in E. coli. Recognition sites for restriction enzymes from Haemophilus aegyptius (Hae III), Haemophilus influenzae f (Hinf) and Arthrobacter luteus (Alu I) were mapped in the satellite DNA of this hybrid plasmid. The spacing of Hae III, Hinf and two Alu I sites at regular intervals of about 365 base pairs is strong evidence that the sequence complexity of this satellite DNA is 365 base pairs. Further evidence comes from the finding that both gradient-purified and cloned 1.688 satellite DNA renature with their Hae III sites in register. The Hae III and Hinf sites in gradient-purified satellite DNA have been shown by Manteuil, Hamer and Thomas (1975) and Shen, Wiesehahn and Hearst (1976) to be distributed at intervals of 365 base pairs and integral multiples thereof. These investigators proposed that some of the sites in an otherwise regular array have been randomly inactivated. Cloned satellite DNA provided a hybridization probe for sensitive studies of the arrangement of these recognition sites in gradient-purified satellite DNA. Some regions of satellite DNA were found to contain many fewer recognition sites than expected from the proposed models. These findings suggest that different regions of 1.688 satellite DNA may exhibit different arrangements of Hae III and Hinf recognition sites.  相似文献   

13.
14.
Fractionation of total adult DNA of five of the seven species of the melanogaster species sub-group of Drosophila in actinomycin D and distamycin A caesium density gradients has revealed the presence of three main-band DNA components, common to all species, and ten satellite DNAs that are distributed between the species. Satellite DNAs are either unique to a species or common to two or more species. The abundance of a common satellite DNA varies between species. There is no simple relationship between the presence of a satellite DNA and a branch point of phylogenetic divergence; nevertheless the arrangement of the species in a phylogeny that is based on the numbers of satellites held in common accurately reflects the pattern of relationships between the same species based on differences in inversions of polytene chromosomes. The species can be similarly arranged according to the compositions of their mitochondrial DNAs. It is possible that the same basic set of sequences, each of low frequency, is common to all species with arbitrary or selected amplification of particular sequences to differing extents in individual species. The conservation of satellites in the group and the close parallel between the distributions of satellites and inversions between the species suggests that either the processes that operate to change both chromosomal phenomena are similarly time-dependent and occurring at relatively low rates or that their rates of change are restricted according to some undetermined functions of these aspects of the genome.  相似文献   

15.
The 1.672 g/cm3 satellite DNA of Drosophila melanogaster was purified by successive equilibrium centrifugations in a CsCl gradient, an actinomycin DCsCl gradient, and a netropsin sulfate/CsCl gradient. The resulting DNA was homogeneous by the physical criteria of thermal denaturation, renaturation kinetics and equilibrium banding in each of the gradients listed above. In addition, the complementary strands could be separated in an alkaline CsCl gradient. Despite this rigorous purification procedure, nucleotide sequence analysis indicates the presence of two different DNA species in this satellite, poly A-A-T-A-TT-T-A-T-A and polyA-A-T-A-T-A-TT-T-A-T-A-T-A. Further physical, chemical and template properties of the isolated complementary strands demonstrate that these two repeating sequences are not interspersed with each other. This result has biological significance since sequences of this particular satellite are known to be located primarily on two different chromosomes, Y and 2. These results further suggest that the sequence heterogeneity observed in satellite DNA of higher eukaryotes may result from mixtures of very closely related but molecularly homogeneous repeated sequences each restricted to a particular chromosome or chromosomal region.  相似文献   

16.
17.
18.
Transcription of a satellite DNA in the newt   总被引:7,自引:0,他引:7       下载免费PDF全文
  相似文献   

19.
Chromatin structure of so-called 'Alu-repeat' in D. melanogaster ribosomal non-transcribed spacer that contains sequences homologous to the promoter of ribosomal genes has been studied. Using the 'protein image' hybridization assay based on UV-light-induced DNA-protein crosslinking and 2-D gel retardation electrophoresis, two proteins of the molecular mass of 50 kD (rABP50) and 70 kD (rABP70), associated with 'Alu-repeat' DNA have been found. Exo III mapping of crosslinking sites and DNase I footprinting have provided a detailed map of H1, rABP50 and rABP70 contacts within the 'Alu-repeat' and H1 and a non-histone protein contacts on satellite DNA. These data indicate precise positioning of non-histone proteins, histone H1 and nucleosomes within genomic regions studied and account for the presence of unusual 240 bp long nucleosomal particles in 'Alu-repeats'. The same approach can be adapted for successive mapping and positioning proteins on genomic DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号