首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some benthic invertebrates in streams make frequent, short journeys downstream in the water column (=drifting). In most streams there are larger numbers of invertebrates in the drift at night than during the day. We tested the hypothesis that nocturnal drifting is a response to avoid predation from fish that feed in the water column during the day. We surveyed diel patterns of drifting by nymphs of the mayfly Baetis coelestis in several streams containing (n=5) and lacking (n=7) populations of rainbow trout, Oncorhynchus mykiss. Drifting was more nocturnal in the presence of trout (85% of daily drift occurred at night) than in their absence (50% of daily drift occurred at night). This shift in periodicity is due to reduced daytime drifting in streams with trout, because at a given nighttime drift density, the daytime drift density of B. coelestis was lower in streams occupied by trout than in troutless streams. Large size classes of B. coelestis were underrepresented in the daytime drift in trout streams compared to nighttime drift in trout streams, and to both day and night drift in troutless streams. Differences in daytime drift density between streams with and without trout were the result of differences in mayfly drift behaviour among streams because predation rates by trout were too low to significantly reduce densities of drifting B. coelestis. We tested for rapid (over 3 days) phenotypic responses to trout presence by adding trout in cages to three of the troutless streams. Nighttime drifting was unaffected by the addition of trout, but daytime drift densities were reduced by 28% below cages containing trout relative to control cages (lacking trout) placed upstream. Drift responses were measured 15 m downstream of the cages suggesting that mayflies detected trout using chemical cues. Overall, these data support the hypothesis that infrequent daytime drifting is an avoidance response to fish that feed in the water column during the day. Avoidance is more pronounced in large individuals and is, at least partially, a phenotypic response mediated by chemical cues.  相似文献   

2.
1. Aquatic predators may influence drift periodicity either directly or indirectly (by non‐consumptive effects involving chemical cues). We took drift samples (eight successive 3‐h sampling intervals over a 24‐h period) on five dates (September 2007, March, April, June and August 2008). Samples were taken at three sites (one site with trout throughout the year, two sites without trout but with fire salamander larvae as top predators from April to August, but without vertebrate predators during the rest of the year) in a stream near Vienna, Austria, to examine the effects of predators on drift periodicity. 2. Of 45 331 specimens caught, the most abundant taxa were Ephemeroptera (32.3%; mainly Baetidae), Diptera (21.5%; mainly Chironomidae), Amphipoda (17.4%; all Gammarus fossarum), Plecoptera (5.4%), Coleoptera (3.5%) and Trichoptera (1.2%). For more detailed analyses, we chose Ephemeroptera (Baetidae; n = 13 457) and Amphipoda (G. fossarum; n = 7888), which were numerous on all sampling dates. 3. The number of drifting baetids and amphipods, as well as total drift density, was generally higher at night than by day, although without predators these differences were significant for Gammaridae but not for Baetidae. 4. When broken down to size classes, night–day drift ratios generally were not significantly different from equality in all size classes of baetids when larval fire salamanders and trout were absent. When predators were present, however, baetid drift density was usually higher at night, except in the smallest and largest size classes. In all size classes of G. fossarum, drift density was usually higher at night, whether with or without the top predators. 5. Although we could study predator effects on drift periodicity at three sites on only a single stream, it seems that non‐consumptive effects may affect Baetidae. Salamander larvae, most probably via kairomones, induced a shift towards mainly nocturnal drift, which could be interpreted as predator avoidance.  相似文献   

3.
Various environmental parameters which may affect the activity ofGammarus pseudolimnaeus were examined in the laboratory. The animals' responses were monitored automatically using an ultraviolet beam interruption technique. The basic diel activity pattern in the fall showed high rates of drifting at night but in the summer showed uniform drift throughout the light/dark cycle. Upstream activity was greater in the summer when it compensated approximately 11% of the number of animals drifting downstream. A large-sized gravel substrate (31.5 mm diameter) produced significantly lower night-time drift than either a medium-sized gravel (11.0 mm diameter) or a small-sized gravel (3.4 mm diameter). Animals drifted more at current speeds of 5 to 15 cm/s than at 20 to 25 cm/s. The introduction of rainbow trout to the tanks in the day or night caused almost total cessation of drift and upstream activity within minutes. Trials with fish water suggested that the amphipods detect some form of labile exudate produced by the fishes. Additions of toxicants, in the form of sulphuric acid and NaCl, produced changes in activity levels before lethal concentrations were reached.  相似文献   

4.
Seasonal and diurnal patterns of larval and juvenile fish drift were investigated in the Marchfeldkanal, a man‐made side branch of the Danube River near Vienna, Austria. A clear seasonal pattern with peak densities in mid‐June was found. Species composition varied over time, showed a site specific pattern and was dominated by tubenose goby Proterorhinus marmoratus . Water temperature was the main factor responsible for the increase of drift densities until the median drift date and repeated occurrence of early larval stages in drift indicated repeated spawning for many species. Significant differences in drift densities between different time periods of the day (day, dusk, night and dawn) were found for common bream Abramis brama , barbel Barbus barbus , chub Leuciscus cephalus , tubenose goby and roach Rutilus rutilus . The highest drift rates occurred at night (2200–0400 hours), with 86% of all larvae drifting during the hours of darkness. Fish larvae of different lengths drifting at different phases of the day were found for common bream, bleak Alburnus alburnus and chub, with largest larvae drifting during dusk (chub) and day (bleak and common bream). For bleak, all gudgeon species Gobio spp., tubenose goby, roach and for all cyprinid species combined, one 2 h night sample was found to be sufficient to predict the total 24 h drift.  相似文献   

5.
6.
According to quantitative indices, the under-ice drift of invertebrates in the piedmont part of the Kedrovaya River (Primorskii Krai) is lower than during the ice-free period. The winter drift is constituted mainly by Diptera and Ephemeroptera. In the warm season, an active drift of hydrobionts is observed only at night; during the freezing-over period, the drift occurs both at night and in the daytime. The number of daytime migrants prevails over organisms drifting at night. The drift of invertebrates is rather low at twilight. The coming of spring thaw and the appearance of gullies leads to an increase in the abundance of animals in the stream. After the ice breaks up in the river, the larvae of Ephemeroptera return to night-drift activity upon the recession of the flood. However, quantitative indices of the daytime drift of other invertebrate groups remains rather high.  相似文献   

7.
1. A knowledge of how individual behaviour affects populations in nature is needed to understand many ecologically important processes, such as the dispersal of larval insects in streams. The influence of chemical cues from drift‐feeding fish on the drift dispersal of mayflies has been documented in small experimental channels (i.e. < 3 m), but their influence on dispersal in natural systems (e.g. 30 m stream reaches) is unclear. 2. Using surveys in 10 Rocky Mountain streams in Western Colorado we examined whether the effects of predatory brook trout (Salvelinus fontinalis) on mayfly drift, that were apparent in stream‐side channels, could also be detected in natural streams. 3. In channel experiments, the drift of Baetis bicaudatus (Baetidae) was more responsive to variation in the concentration of chemical cues from brook trout than that of another mayfly, Epeorus deceptivus (Heptageniidae). The rate of brook trout predation on drifting mayflies of both species in a 2‐m long observation tank was higher during the day (60–75%) but still measurable at night (5–10%). Epeorus individuals released into the water column were more vulnerable to trout predation by both day and night than were Baetis larvae treated similarly. 4. Drift of all mayfly taxa in five fishless streams was aperiodic, whereas their drift was nocturnal in five trout streams. The propensity of mayflies to drift was decreased during the day and increased during the night in trout streams compared with fishless streams. In contrast to the channel experiments, fish biomass and density did not alter the nocturnal nature nor magnitude of mayfly drift in natural streams. 5. In combination, these results indicate that mayflies respond to subtle differences in concentration of fish cues in experimental channels. However, temporal and spatial variation in fish cues available to mayflies in natural streams may have obscured our ability to detect responses at larger scales.  相似文献   

8.
Macroinvertebrate drift in a Rocky Mountain stream   总被引:5,自引:4,他引:1  
J. David Allan 《Hydrobiologia》1987,144(3):261-268
An extensive series of drift collections from a Rocky Mountain stream was used to investigate quantitative patterns in the taxonomic composition of drift throughout spring, summer and fall for 1975–1978. Drift was estimated by drift rate, the number of organisms drifting past a point per 24 h; and by drift density, the numbers of organisms collected per 100 m3 of water sampled.Drift densities were up to ten times greater by night than by day, and 24 h drift densities for the total fauna approached 2000 per 100 m3 in June–July, declining to <500 by autumn. Ephemeroptera, and especially Baetis, dominated the drift. Drift rates were greatest in late spring, around 106 per 24 h, which are among the highest values reported for small trout streams. Drift rates declined to <105 during the summer, and shifts in the taxonomic composition are described.Multiple regression analysis of the relationship between drift rate and density, and the independent variables discharge, benthic density and temperature, showed that discharge typically was a significant predictor of 24 h drift rate, usually the best single predictor. In contrast, 24 h drift density most frequently was independent of discharge, indicating that this measure tends to correct for seasonal variation in discharge, as suggested in the literature. However, this was not invariably true. Drift density significantly correlated with benthic density in five of eight taxa inspected, thus seasonal declines in the benthos probably accounted for parallel declines in drift density.  相似文献   

9.
1. In streams, mayflies (Order Ephemeroptera) are at risk from fish feeding visually in the water column. The effect of fish odour on the behaviour of Baetis bicaudatus from a fishless stream and a trout stream was investigated in four large oval tanks supplied with water from the fishless stream.
2. For each mayfly population, mayfly positioning on the substratum and movement in the water column (drift) were measured during the day and night, over 3 days. Brook trout ( Salvelinus fontinalis ) odour was added to two tanks to test the effect of a threat from fish.
3. Throughout the experiment more mayflies from the trout stream were observed on the substratum surface and in the water column during the night than the day, but the magnitude of night drift was less in tanks with fish odour.
4. Baetis from the fishless stream also displayed a nocturnal periodicity in drift and positioning, but their night-time drift was not affected by the presence of fish odour. On the first day of the experiment, however, more mayflies were observed on the substratum surface and drifting in tanks without fish odour during the day.
5. Sensitivity to fish odour may enable mayflies to alter their behaviour according to the risk of predation from fish.  相似文献   

10.
1. In streams, mayflies (Order Ephemeroptera) are at risk from fish feeding visually in the water column. The effect of fish odour on the behaviour of Baetis bicaudatus from a fishless stream and a trout stream was investigated in four large oval tanks supplied with water from the fishless stream.
2. For each mayfly population, mayfly positioning on the substratum and movement in the water column (drift) were measured during the day and night, over 3 days. Brook trout ( Salvelinus fontinalis ) odour was added to two tanks to test the effect of a threat from fish.
3. Throughout the experiment more mayflies from the trout stream were observed on the substratum surface and in the water column during the night than the day, but the magnitude of night drift was less in tanks with fish odour.
4. Baetis from the fishless stream also displayed a nocturnal periodicity in drift and positioning, but their night-time drift was not affected by the presence of fish odour. On the first day of the experiment, however, more mayflies were observed on the substratum surface and drifting in tanks without fish odour during the day.
5. Sensitivity to fish odour may enable mayflies to alter their behaviour according to the risk of predation from fish.  相似文献   

11.
1. Invertebrate drift is commonly investigated in streams, with the majority of studies focussed on temporal (typically diel) variation. In comparison, few studies have investigated spatial variation in drift and there is little consensus among them. We tested the hypothesis that spatial variation in invertebrate drift is as important as temporal variation. 2. The density of drifting invertebrates in a chalk stream was sampled using an array of nets arranged to determine vertical, lateral and longitudinal variation. Samples were collected at dawn, during the day, at dusk and by night, on four separate monthly occasions. Insecta and Crustacea were analysed separately to identify the effect of differing life history strategies. The density of drifting debris was also recorded, to act as a null model. 3. Time of day and vertical position together explained the majority of the variance in invertebrate drift (79% for Insecta and 97% for Crustacea), with drift densities higher at dusk and night, and nearer the stream bed. Independently, time of day (38%, Insecta; 52%, Crustacea) and vertical position (41%, Insecta; 45%, Crustacea) explained a similar amount of the observed variance. Month explained some of the variance in insect drift (9%) but none for Crustacea. 4. Variation in the density of drifting debris showed little in common with invertebrate drift. There was little variation associated with time of day and only 27% of the observed variation in debris could be explained by the factors investigated here, with month explaining the largest proportion (20%). We suggest the difference in drifting debris and invertebrates provides further evidence for a strong behavioural component in invertebrate drift. 5. Spatial variation in invertebrate drift can be of the same order of magnitude as the much‐described diel temporal variation. The extent of this spatial variation poses problems when attempting to quantify invertebrate drift and we recommend that spatial replication should be incorporated into drift studies.  相似文献   

12.
SUMMARY. Larvae of Dixa , especially D. puberula Loew., were a significant component of the invertebrate drift in the Walla Brook in southwest England, the Wilfin Beck and the River Duddon in the English Lake District, and the River Estibère in the French Pyrenees. The drifting of the larvae increased markedly at night and showed a definite diel periodicity with maximum numbers usually in the early hours of the night. Seasonal peaks in the density of larvae in the drift frequently occurred in months when adults and especially pupae were present. Most drifting larvae were in the fourth and final instar, and their drift rate usually increased when they were searching for suitable pupation sites.  相似文献   

13.
Introduction of sculpins into a stream previously devoid of these predators significantly reduced drift rate of Gammarus pulex. The drift of insect larvae was not affected. High amounts of exudates after implantation of sculpins were probably responsible for the low number of drifting G. pulex specimens. Laboratory experiments confirmed reduced locomotory activity of G. pulex when exposed to caged sculpins, an observation that excludes reduced drift activity as a result only of predation.The average size of drifting G. pulex specimens was larger during the night than during the day. This result is in accordance with the hypothesis that large individuals should, in relation to small ones, turn nocturnal because of greater predation risk during daytime. Presence of sculpins did not alter the size composition of drifting G. pulex.  相似文献   

14.
Summary Mayfly larvae of Paraleptophlebia heteronea (McDunnough) had two antipredator responses to a nocturnal fish predator (Rhinichthys cataractae (Valenciennes)): flight into the drift and retreat into interstitial crevices. Drift rates of Paraleptophlebia abruptly increased by 30 fold when fish were actively foraging in the laboratory streams but, even before fish were removed, drift began returning to control levels because larvae settled to the substrate and moved to areas of low risk beneath stones. This drifting response was used as an immediate escape behavior which likely decreases risk of capture from predators which forage actively at night. Surprisingly, drift most often occurred before contact between predator and prey, and we suggest that in darkness this mayfly may use hydrodynamic pressure waves for predator detection, rather than chemical cues, since fish forage in an upstream direction. Although drifting may represent a cost to mayfly larvae in terms of relocation to a new foraging area with unknown food resources, the immediate mortality risk probably out-weighs the importance of staying within a profitable food patch because larvae can survive starvation for at least 2 d. In addition to drifting, mayflies retreated from upper, exposed substrate surfaces to concealed interstitial crevices immediately after a predator encounter, or subsequent to resettlement on the substrate after predator-induced drift. A latency period was associated with this response and mayflies remained in these concealed locations for at least 3 h after dace foraging ceased. Because this mayfly feeds at night and food levels are significantly lower in field refugia under stones, relative to exposed stone surfaces, predator avoidance activity may limit foraging time and, ultimately, reduce the food intake of this stream mayfly.  相似文献   

15.
Larval drift of the trichopteran Rhyacophila nubila (Zett.) was studied in a West Norwegian river. The frequency distribution of different instars in the drift samples was significantly different compared with the benthic samples. The drift, measured as the number which passed a transect of the river, rised markedly in periods of high water discharge. Different instars can be arranged according to the extent in which they are drifting: 2>3>4>1>5. Instar 1 and 2 shared a neutral phototaxis. From the 2nd instar and on, the larvae became increasingly night-active with a culmination in the last instar which was highly night active, also confined by laboratory studies. It is suggested that changes in activity patterns is associated with a shift towards a more carnivorous way of life.  相似文献   

16.
Feeding of age-1 brown trout Salmo trutta in a third-order river in northern Finland was usually highest in the twilight hours and lowest around midday. Diel periodicity in food intake was less distinct and rarely significant for age-0 trout. Daily rations declined seasonally, being lowest in October, and highest in June (age-1 trout) or early August (age-0 trout). Prey selection did not differ between day and night, but differences between age classes and sampling dates were distinct. Age-0 trout preferred Ephemerella nymphs in summer and Micrasema larvae later in the season. Age-1 trout fed selectively on caddis larvae on all sample dates. Aerial insects and Baetis nymphs were avoided by both age classes on most occasions. These patterns of preference are probably explained by a trend towards epibenthic feeding, which may be a predominant foraging mode in some trout populations. Nevertheless, repuscular peaks in feeding periodicity suggest that trout were able to capitalize on the increased availability of drifting prey in the twilight, especially in the early summer months.  相似文献   

17.
J. M. Elliott 《Oecologia》1973,12(4):329-347
Summary The diet of Salmo gairdneri and S. trutta in a Pyrenean stream was very similar, and was also similar to the percentage composition of the drift but not the benthos. There was a good correlation between diel changes in the amount of food (both numbers and biomass) in the stomachs and diel changes in the abundance of drifting invertebrates. The major feeding period was in the early hours of the night when the trout fed chiefly on benthic invertebrates in the drift. This was the only feeding period in experiments 1 and 2 (mean water temperatures 4.7 and 7.3° C) but in experiment 3 (10.8° C), there was a second feeding period in the day when terrestrial invertebrates and emerging aquatic insects formed a large proportion of the diet.Neither species was consuming a greater amount of food than the other. The weight of food consumed/trout/day increased with water temperature, and was close to the daily food requirements for resting metabolism in experiment 1. for twice resting metabolism (active metabolism) in experiment 2, and for four times resting metabolism in experiment 3. Therefore the energy of the second meal in experiment 3 was available for growth.The effect of temperature, on rates of gastric evacuation was the chief factor which determined the number of meals/day; the availability of food organisms in the drift determined the time of feeding; and the requirements for metabolism (affected by temperature and body weight) determined the amount of energy left for growth.  相似文献   

18.
Factors influencing the choice of invertebrate food by early feeding trout are sought, special attention being given to the dimensions of the prey. The stomach contents of fish of similar age feeding on lake plankton and drifting stream fauna are compared. Little consistent preference was displayed for the smaller planktonic organisms but prey size was of importance in the distribution of stream benthos among predators of different lengths. The width of the prey was of greater significance to selection than the mean volume or the area of the largest surface of the food items. When the fish were in obvious competition for food the correlation between predator length and all prey dimensions improved.  相似文献   

19.
Many species of birds that normally migrate during the night have been observed engaging in so‐called morning flights during the early morning. The results of previous studies have supported the hypothesis that one function of morning flights is to compensate for wind drift that birds experienced during the night. Our objective was to further explore this hypothesis in a unique geographic context. We determined the orientation of morning flights along the southern shore of Lake Erie's western basin during the spring migrations of 2016 and 2017. This orientation was then compared to the observed orientation of nocturnal migration. Additionally, the orientation of the birds engaged in morning flights following nights with drifting winds was compared to that of birds following nights with non‐drifting winds. The morning flights of most birds at our observation site were oriented to the west‐northwest, following the southern coast of Lake Erie. Given that nocturnal migration was oriented generally east of north, the orientation of morning flight necessarily reflected compensation for accumulated, seasonal wind drift resulting from prevailingly westerly winds. However, the orientation of morning flights was similar following nights with drifting and non‐drifting winds, suggesting that birds on any given morning were not necessarily re‐orienting as an immediate response to drift that occurred the previous night. Given the topographical characteristics of our observation area, the west‐northwest movement of birds in our study is likely best explained as a more complex interaction that could include some combination of compensation for wind drift, a search for suitable stopover habitat, flying in a direction that minimizes any loss in progressing northward toward the migratory goal, and avoidance of a lake crossing.  相似文献   

20.
Age-0 brown trout, Salmo trutta, inhabit shallow and slow-flowing habitats where they can easily maintain stationary swimming positions. However, recent results have shown that they use deeper and faster habitats during daylight than at night, suggesting the occurrence of a nocturnal movement toward stream-margin habitats. Experiments were conducted to describe precisely when this diel pattern of habitat use appears during ontogeny. In two indoor channels, free-embryo brown trout were deposited under the gravel. When emerging, alevins were free to choose between margin (2 cm deep, 0-2 cm s-1) or deep habitat (12 cm, 2-4 cm s-1), or to leave the channel (upstream or downstream). During the week of emergence, upstream and downstream catches, fish habitat use (deep habitat or margin), and fish behavior (resting or swimming) were measured by direct observations and trap counts. Three treatments were performed: (1) fish artificially fed on drifting invertebrates, (2) fish exposed to predators (bullhead, Cottus gobio), and (3) control channels (no food, no predator). In control and food channels, a diel pattern of habitat use was observed 1-2 days after the emergence started. Most fish rested in the margin at night, whereas they moved towards the deep habitat during daylight to hold stationary swimming positions. In the presence of bullhead, most trout were cryptic, and visible fish stood in the margin during both daylight and at night. The importance of predation risk and foraging behavior on the ontogeny of the diel pattern of habitat use is discussed. Results support the direct development without larva from free-embryo via alevin in brown trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号