首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-way connectivity maintained by fish passing through hydropower turbines in fragmented rivers can be important to population dynamics, but can also introduce a new and significant source of mortality. Sources of mortality during turbine passage can come from several sources including blade strike, shear forces, cavitation, or pressure decreases and parsing the contributions of these individual forces is important for advancing and deploying turbines that minimize these impacts to fishes. We used a national hydropower database and conducted a systematic review of the literature to accomplish three goals: (1) report on the spatial distribution of turbine types and generation capacities in the USA, (2) determine fish mortality rates among turbine types and fish species and (3) examine relationships between physical forces similar to those encountered during fish turbine passage and fish injury and mortality. We found that while Francis turbines generate 56 % of all US hydropower and have the highest associated fish mortality of any turbine type, these turbines are proportionally understudied compared to less-common and less injury-associated Kaplan turbines, particularly in the Pacific Northwest. While juvenile salmonid species in actual or simulated Kaplan turbine conditions were the most commonly studied, the highest mortality rates were reported from percid fishes passing through Francis turbines. Future studies should focus on understanding which species are most at-risk to turbine passage injury and mortality and, subsequently, increasing the diversity of taxonomy and turbine types in evaluations of turbine injury and mortality.  相似文献   

2.
负压状态下压力变化导致鲫鱼身体组织的损伤   总被引:1,自引:0,他引:1  
通过试验研究负压状态下压力变化过程对鲫(Carassius auratus auratus)的损伤,试验采用真空泵和空气压缩机在试验容器内形成不同的压力变化过程,统计不同体长的鲫经历压力变化过程后的损伤情况,并对部分受损伤的鲫进行解剖和组织观察。研究发现负压状态下压力时变导数较大的变化过程会对鲫的生存构成直接威胁,主要损伤是鱼鳔部分或全部受损,在肝胰脏、肾脏等处有明显出血点。综合分析不同试验条件对鲫损伤的情况,得到了对鲫尽可能安全的压力时变导数极限值,从而为新型环保水力设施的设计提供参考依据,起到保护渔业资源的作用。  相似文献   

3.
Barotrauma caused by rapid decompression during hydroturbine (turbine) passage may occur as fish move through the low pressure region below the turbine runner. This scenario is of particular concern in North American rivers with populations of ESA-listed salmon. The US Army Corps of Engineers (USACE) and the Pacific Northwest National Laboratory released Sensor Fish into lower Snake and Columbia River turbines to determine the magnitude and rate of pressure change fish might experience. Recorded pressures were applied to simulated turbine passage (STP) in laboratory studies to determine the effect of rapid decompression on juvenile Chinook salmon. These STP studies have increased our understanding of how pressure effects fish passing through turbines and suggest that the ratio of pressure change [acclimation pressure (the depth upstream of the dam where fish are neutrally buoyant) divided by nadir pressure (lowest pressure)] is highly predictive in determining the effect on smolt survival. However, uncertainty remains in smolt acclimation depth prior to entering turbine intakes at hydroelectric facilities. The USACE continues to make progress on salmon survival and recovery efforts through continued research and by applying pressure study results to turbine design. Designing new turbines with higher nadir pressure criteria is likely to provide safer fish passage for all salmonid species experiencing turbine passage.  相似文献   

4.
Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this.  相似文献   

5.
This study assessed the usefulness of passing euthanized Atlantic salmon Salmo salar smolts through an Archimedean screw turbine to test for external damage, as compared with live, actively swimming smolts. Scale loss was the only observed effect. Severe scale loss was 5·9 times more prevalent in euthanized turbine‐passed fish (45%) than the live fish (7·6%). Additionally, distinctive patterns of scale loss, consistent with grinding between the turbine helices and housing trough, were observed in 35% of euthanized turbine‐passed smolts. This distinctive pattern of scale loss was not seen in live turbine‐passed smolts, nor in control groups (live and euthanized smolts released downstream of the turbine), which suggests that the altered behaviour of dead fish in turbine flows generates biased injury outcomes.  相似文献   

6.
Tidal hydroelectric power has been proposed as one potential solution for sustainable energy sources. The first tidal turbine in North America began continuous operation in the Annapolis River estuary (44 °45′N; 65° 29′W) in June, 1985. The machine is an axial‐flow, hydraulic‐lift propeller turbine, a type known to cause fish mortality. Anadromous populations of American shad Alosa sapidissima, striped bass Morone saxatilis and Atlantic sturgeon Acipenser oxyrinchus utilize the Annapolis River for spawning and other life history phases. After power generation commenced obvious turbine mortalities of these fishes began appearing downstream of the turbine. Assessments of the A. sapidissima adult spawning runs during 1981–1982 (pre‐operation) and 1989–1996 (operational) indicated significant changes in population characteristics after power generation began. Adult length, mass, age and per cent repeat spawners declined and total instantaneous mortality (Z) increased from 0.30 to 0.55. The pre‐turbine spawning runs had older fish with numerous adult cohorts whereas by 12 years after operation began runs consisted of younger fish with fewer adult cohorts. During 1972–1987 numerous studies indicated the Annapolis River had an important angling fishery for M. saxatilis, but detailed annual records kept by a fishing contest during 1983–1987 and an elite angler family during the period 1976–2008 demonstrated a rapid decline in the number of fish >4.0 kg after turbine operation began. Pre‐turbine catch by the angling family of fish >4.0 kg accounted for 84.1% of total catch, but declined significantly to 39.6% of total catch from 1986–1999, and to none from 2000–2008. The existence of an A. oxyrinchus stock in the Annapolis River was unknown before turbine operation, but during 1985–2017, 21 mortalities were recovered by chance seaward of the turbine. Mechanical strike and cavitation mortalities consisted of juveniles, mature males and gravid and spent females of ages 10 to 53 years found during June to October, the period when this anadromous species returns to its natal river to spawn. The results of the long‐term studies at Annapolis indicate managers should realize substantial risks exist for the fish resources of the world's oceans from deployment of instream propeller turbines.  相似文献   

7.
Scruton  D.A.  McKinley  R.S.  Kouwen  N.  Eddy  W.  Booth  R.K. 《Hydrobiologia》2002,483(1-3):83-94
A fish protection system has been installed in a power canal at a hydroelectric facility on the Exploits River, Grand Falls-Windsor, Newfoundland, Canada. The river has an anadromous Atlantic salmon (Salmo salar)population in the order of 30000 returning adults. A louver and bypass were installed to protect downstream migrating smolt and kelt from entering the penstocks and turbines in the power canal at the generating facility. The efficiency and effectiveness of this protection system has been evaluated since 1997 through a combination of conventional telemetry, use of a digital spectrum processing (DSP) telemetry system with multiple antennae array, floy tagging, and velocity profiling along the louver array and throughout the canal. Initial monitoring in 1997 using conventional telemetry indicated low fish guidance efficiencies (FGEs) in the area of 25% for smolt. In 1998, a DSP telemetry system was installed along the louver array to attempt to identify problem areas where fish were passing through or under the louver. This work also recorded low smolt FGEs in 1998 (24.3%). However, the DSP system did identify sites along the louver array where fish were being lost, and hydraulic measurements suggested fish loss was related to hydraulic turbulence and irregularities in the guidance velocities. In 1999, a scale model of the power canal and bypass system was constructed at the University of Waterloo Engineering Department's Hydraulic Laboratory and a number of structural and operational changes to the system were evaluated. Based on the results of laboratory hydraulic modeling and DSP telemetry, a number of changes were made to the louver and bypass, prior to operation in 1999 and 2000. Monitoring of smolt out migration in 1999 and 2000 indicated a substantial improvement in smolt FGEs to 54.0 and 65.3%, respectively, and the DSP system identified areas where further improvements could be made. This paper demonstrates the utility of a sophisticated telemetry system in the evaluation of fish protection systems and how the technology can be applied towards the optimization of the effectiveness of fish by-passes.  相似文献   

8.
鱼类通过鱼道内水流速度障碍能力的评估方法   总被引:3,自引:0,他引:3  
石小涛  陈求稳  黄应平  刘德富  庄平 《生态学报》2011,31(22):6967-6972
鱼类通过鱼道内水流速度障碍能力的量化对鱼道设计有重要理论和实际价值,其基础是鱼类游泳能力的测定.首先对鱼类游泳能力的研究方法进行了概述总结,指出了鱼类游泳能力经典测试方法存在测定流场与自然情况相差较大的不足;分析了关键要素如鱼类行为特征、生理耗能规律及水力特性对鱼类通过水流速度障碍能力的影响;提出了分析鱼类游泳行为和能力与特征流场的关系,探讨鱼类通过水流障碍行为规律和生理疲劳恢复特征,通过研究仿自然流态下的鱼类自由游泳行为、水力计算及生理耗能的关系,构建多因素鱼类游泳能力关系式,定量评价鱼类通过鱼道内水流速度障碍的发展方向.  相似文献   

9.
Recent advances in biomedical research have resulted in the development of specific biomarkers for diagnostic testing of disease condition or physiological risk. Of specific interest are αII-spectrin breakdown products (SBDPs), which are produced by proteolytic events in traumatic brain injury and have been used as biomarkers to predict the severity of injury in humans and other mammalian brain injury models. This study describes and demonstrates the successful use of antibody-based mammalian SBDP biomarkers to detect head injury in migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) that have been injured during passage through high-energy hydraulic environments present in spillways under different operational configurations. Mortality and injury assessment techniques currently measure only near-term direct mortality and easily observable acute injury. Injury-based biomarkers may serve as a quantitative indicator of subacute physical injury and recovery, and aid hydropower operators in evaluation of safest passage configuration and operation actions for migrating juvenile salmonids. We describe a novel application of SBDP biomarkers for head injury for migrating salmon. To our knowledge, this is the first documented cross-over use of a human molecular biomarker in a wildlife and operational risk management scenario.  相似文献   

10.
The effect of flow turbulence on the swimming speed was studied in perch (Perca fluviatilis) with different body length. The critical flow rate was used as an index of fish swimming performance. The longer was the fish, the higher turbulence was required to decrease the critical flow rate. The mechanism of turbulence impact on fish locomotion relied on the vortex structure of the flow. The torque produced by hydrodynamic forces in a vortex favors fish overturn and loss of balance. Such effect of turbulence was observed when the sizes of the vortex and fish body were similar. The fish uses the pectoral fins to restore the balance, which increases their hydraulic resistance and, together with energy expenditure for spatial balance control, decreases the swimming speed.  相似文献   

11.
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P<0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an environment with a well-mixed water column can have significant effects on larval fish survival and growth.  相似文献   

12.
Macrotidal estuaries of the inner Bay of Fundy are utilized by large numbers of migratory fishes, particularly dogfish, sturgeon, herring, shad, Atlantic salmon and striped bass as well as by other migratory marine animals, many of which have large body sizes (squid, Lamnid sharks, seals and whales). Tagging experiments indicate the fishes originate from stocks derived over the entire North American Atlantic coast from Florida to Labrador. Population estimates suggest up to 2.0 times 106adult American shad (Alosa sapidissima) migrate through an individual embayment each year. These migrations are an integral part of the life history of the respective species and appear to be controlled in part by the near shore movements of ocean currents. In other regions of the world similar macrotidal estuaries exist (Cook Inlet, Alaska; Severn Estuary, U.K.) and they, like the Bay of Fundy, are linked in continuum to the local ocean currents. We propose that marine animals utilize all these regions in a manner similar to the Bay of Fundy estuaries and properly designed surveys will reveal their presence. Fish passage studies utilizing the Annapolis estuary low-head, tidal turbine on the Bay of Fundy have shown that turbine related mortality of 20–80% per passage occurs depending on fish species, fish size and the efficiency of turbine operation. We suggest that introduction of tidal turbines into open ocean current systems will cause widespread impact on marine populations resulting in significant declines in abundance.  相似文献   

13.
Wind farms may have two broad potential adverse effects on birds via antagonistic processes: displacement from the vicinity of turbines (avoidance), or death through collision with rotating turbine blades. Large raptors are often shown or presumed to be vulnerable to collision and are demographically sensitive to additional mortality, as exemplified by several studies of the Golden Eagle Aquila chrysaetos. Previous findings from Scottish Eagles, however, have suggested avoidance as the primary response. Our study used data from 59 GPS-tagged Golden Eagles with 28 284 records during natal dispersal before and after turbine operation < 1 km of 569 turbines at 80 wind farms across Scotland. We tested three hypotheses using measurements of tag records’ distance from the hub of turbine locations: (1) avoidance should be evident; (2) older birds should show less avoidance (i.e. habituate to turbines); and (3) rotor diameter should have no influence (smaller diameters are correlated with a turbine’s age, in examining possible habituation). Four generalized linear mixed models (GLMMs) were constructed with intrinsic habitat preference of a turbine location using Golden Eagle Topography (GET) model, turbine operation status (before/after), bird age and rotor diameter as fixed factors. The best GLMM was subsequently verified by k-fold cross-validation and involved only GET habitat preference and presence of an operational turbine. Eagles were eight times less likely to be within a rotor diameter’s distance of a hub location after turbine operation, and modelled displacement distance was 70 m. Our first hypothesis expecting avoidance was supported. Eagles were closer to turbine locations in preferred habitat but at greater distances after turbine operation. Results on bird age (no influence to 5+ years) rejected hypothesis 2, implying no habituation. Support for hypothesis 3 (no influence of rotor diameter) also tentatively inferred no habituation, but data indicated birds went slightly closer to longer rotor blades although not to the turbine tower. We proffer that understanding why avoidance or collision in large raptors may occur can be conceptually envisaged via variation in fear of humans as the ‘super predator’ with turbines as cues to this life-threatening agent.  相似文献   

14.
We present the magnitude of losses of European eel Anguilla anguilla and American eel A. rostrata in passage through propeller and Francis turbines at hydroelectric projects. Survival and injury rates and types were turbine type related. Overall, eel survival was higher (mean ± 90% CI = 95.1 ± 5.3%,) and injury rate lower (12.5 ± 10.5) at Francis than propeller turbines (survival = 80.7 ± 6.4%; injury rate = 25.7 ± 7.9%). The common injury type at Francis turbines was bruises and at propeller turbines was severance. Blade shape and thickness of the leading edge of the blades (rounded, thick buckets of Francis turbines v. flatter, sharper edged blades in propeller turbines); eel entry routes into the turbines; their flexible, cylindrical body shape and orientation probably contributed to these differences. Relationship between survival and injury and turbine characteristics was turbine specific. For Francis turbines, one negative correlation (r = −0.986, P < 0.01) between survival and runner speed was found and two positive correlations between injury rates and fish length (r = 0.740, P < 0.10) and number of blades (r = 0.835, P < 0.05) were noted for propeller turbines. Several severely injured eels remained active 48 h after turbine passage suggesting caution is warranted when using telemetric movement for estimating eel survival. We conclude there is a need to (a) better understand travel paths and approach orientation of eels through turbines; (b) determine where only eel passage is of concern at hydropower plants that have both turbine types and therefore preferential operation of Francis turbines may be considered; (c) inform hydropower plant operators where turbine replacement is being considered and downstream eel passage is of concern that replacement by Francis or bulb turbines may prove beneficial for eel passage.  相似文献   

15.
Plant resistance to drought depends on timely stomatal closure   总被引:1,自引:0,他引:1       下载免费PDF全文
Stomata play a significant role in the Earth's water and carbon cycles, by regulating gaseous exchanges between the plant and the atmosphere. Under drought conditions, stomatal control of transpiration has long been thought to be closely coordinated with the decrease in hydraulic capacity (hydraulic failure due to xylem embolism). We tested this hypothesis by coupling a meta‐analysis of functional traits related to the stomatal response to drought and embolism resistance with simulations from a soil–plant hydraulic model. We report here a previously unreported phenomenon: the existence of an absolute limit by which stomata closure must occur to avoid rapid death in drought conditions. The water potential causing stomatal closure and the xylem pressure at the onset of embolism formation were equal for only a small number of species, and the difference between these two traits (i.e. safety margins) increased continuously with increasing embolism resistance. Our findings demonstrate the need to revise current views about the functional coordination between stomata and hydraulic traits and provide a mechanistic framework for modeling plant mortality under drought conditions.  相似文献   

16.
We studied downstream migration of 256 radio-tagged Atlantic salmon smolts passing a low-head power station where technical facilities have been improved to allow safe migration via several bypass routes. Extra mortality was 7 and 17% (two years) in the power station reservoir, and a minimum of 10 and 13% at the power station compared to in a control stretch. The majority of the smolts followed the main flow at the power station, towards the turbines. Sloped bar racks with 10 mm bar spacing hindered smolts from entering the turbines, hence there was no turbine mortality. Smolts used surface openings in the racks, which directed them to a bypass route outside the turbines. The extra mortality in the reservoir and at the power station was related to physical injuries in bypass routes and to predation. The mortality risk in the reservoir and at the power station decreased with increasing migration speed. Migration speeds increased with water discharge. Migration was slower when the smolts passed the power station than on other stretches. This study shows that hydropower regulation caused elevated mortality and delays for downstream migrating fish, even with improved technical facilities to reduce mortality.  相似文献   

17.
鄱阳湖是长江四大家鱼索饵、育肥的重要场所,近年来鄱阳湖出现了枯水季水位严重降低、枯水期延长、湿地面积缩小的现象。为解决鄱阳湖水资源、水文、水生态等问题,建议在鄱阳湖入江水道兴建控制闸水利枢纽。然而,拟建的水利枢纽工程将打破鄱阳湖与长江的天然连通性,可能会对四大鱼类洄游过程产生影响。通过构建二维和三维水动力模型,分析鄱阳湖水利枢纽建设后入江水道与枢纽洄游通道的水动力学特征,结合实验和文献获得的草鱼幼鱼和成鱼游泳能力参数,阐明了枢纽建设对草鱼洄游的影响。结果表明:在设计调度模式下,草鱼幼鱼入湖期间,湖口段适宜通过天数达到83.74%以上,说明湖口及入江水道的水动力条件对洄游的影响较小,同时,枢纽工程处在过鱼高峰期仍能保持较高的过闸效率;草鱼成鱼出湖期间,丰、平水年闸前水动力条件对洄游的影响较小,仅在枯水年闸前流速几乎静止,草鱼适宜出湖天数偏低。在该调度模式下,水利枢纽建设运行后鄱阳湖整体水动力条件能够满足草鱼洄游需求。目前设计的鱼道在高、低水位时期均出现局部流速过大的现象,不满足过鱼条件。从四大家鱼江湖洄游的角度为鄱阳湖水利枢纽工程设计和运行提供科学参考。  相似文献   

18.
Many studies have shown the effects of yearly or monthly environmental conditions on the structure of fish and zooplankton communities. Environmental conditions can also vary greatly on much shorter time scales. We tested the effects of abiotic conditions on the daily abundance of fish and zooplankton in the littoral zone of Lake Texoma, Oklahoma-Texas. After date was removed statistically from the analysis, no environmental variables were particularly important in determining the daily abundance of zooplankton, whereas, numbers of fish in the littoral zone were related to changes in wind velocity and wave height. Regressions of daily fish abundance against wave height showed that the response differed among species and among life-history intervals within species. Numbers of juvenile Dorosoma petenense, Notropis atherinoides, and Morone chrysops were positively correlated with wave height, whereas juvenile Menidia beryllina were negatively correlated with wave height. We suggest that changes in the abundance of particular species may be associated with (1) avoidance of inshore areas to escape possible physical damage by wave induced turbulence, (2) attraction to inshore areas to feed on prey organisms suspended in the water column by wave induced turbulence, and (3) avoidance of inshore areas to escape high predator abundance and increased possibility of being eaten due to turbulence.  相似文献   

19.
1. We hypothesised that adult insects actively monitor potential habitats for the presence of fish by means of chemical cues and avoid sites that pose significant risks. This was examined by quantifying colonisation of insects in outdoor pools with no fish (controls), fish (direct predation effect) or caged fish (chemical predator cues).
2. A significant direct effect of predation was found, but no indirect effect (avoidance of chemical cue pools), on the total biomass of colonising insects. However, predatory insects avoided fish-cue pools, thus releasing non-predatory insects from predation. This resulted in significantly greater biomass of non-predatory insects in fish-cue pools than control pools.
3. Fish reduced the number of species of colonising insects in pools through predation. This negative influence of fish implies that caution is necessary when stocking wetlands and ponds with fish if the goal is to maximise biodiversity.
4. Our data suggest that although predatory aquatic insects may use chemical signals to assess the quality of potential habitats with respect to predation risk, direct predation is the main method by which fish affect insect assemblages in ponds. Because fish and invertebrate predators may both have strong effects on prey mortality, behavioural adjustment by insects to the actual predator regime within a habitat should be more important than avoiding colonisation of habitats with fish.  相似文献   

20.
Hydrobiological studies with reference to sudden fish mortality   总被引:1,自引:1,他引:0  
Summary Hydrobiological investigation of Gandhisagar (Nagpur) was undertaken with a view to finding out the causes of sudden fish mortality. Extensive observations carried out for over a period of several weeks, prior to, during and after mortality, have led us to the conclusion that depletion of dissolved oxygen was the main cause of sudden fish mortality.The depletion of Oxygen was brought about by several factors, viz., the depletion of phytoplankton resulting in the lesser evolution of oxygen, the gradual increase in the zooplankton which reached the maximum on the day of the fish mortality, resulting in the increased consumption of Oxygen for respiratory purposes, and the decomposition of the bottom sludge which also consumed oxygen to a large measure for the purposes of Chemical oxidation.The changes that are normally correlated with the decrease in the phytoplankton, such as, (i) lowering of the pH (from 8.9 to 7.5), (ii) the decrease in the carbonate contents of the water and (iii) the increase in the bottom turbidity were also noticed. Causes of the depletion of phytoplankton have not been ascertained but may be due to the presence ofDaphnia in very large numbers. Other aspect of the problem is under investigation.Published with the permission of the Director.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号