首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We investigated the effects of two purported calcium sensitizing agents, MCI-154 and DPI 201–106, and a known calcium sensitizer caffeine on Mg-ATPase (myofibrillar ATPase) and myosin ATPase activity of left ventricular myofibrils isolated from non-failing, idiopathic (IDCM) and ischemic cardiomyopathic (ISCM) human hearts (i.e. failing hearts). The myofibrillar ATPase activity of non-failing myofibrils was higher than that of diseased myofibrils. MCI-154 increased myofibrillar ATPase Ca2+ sensitivity in myofibrils from non-failing and failing human hearts. Effects of caffeine similarly increased Ca2+ sensitivity. Effects of DPI 201–106 were, however, different. Only at the 10–6 M concentration was a significant increase in myofibrillar ATPase calcium sensitivity seen in myofibrils from non-failing human hearts. In contrast, in myofibrils from failing hearts, DPI 201–106 caused a concentration-dependent increase in myofibrillar ATPase Ca2+ sensitivity. Myosin ATPase activity in failing myocardium was also decreased. In the presence of MCI-154, myosin ATPase activity increased by 11, 19, and 24% for non-failing, IDCM, and ISCM hearts, respectively. DPI 201–106 caused an increase in the enzymatic activity of less than 5% for all preparations, and caffeine induced an increase of 4, 11, and 10% in non-failing, IDCM and ISCM hearts, respectively. The mechanism of restoring the myofibrillar Ca2+ sensitivity and myosin enzymatic activity in diseased human hearts is most likely due to enhancement of the Ca2+ activation of the contractile apparatus induced by these agents. We propose that myosin light chain-related regulation may play a complementary role to the troponin-related regulation of myocardial contractility.  相似文献   

2.
Studies were conducted to examine the effects of chronic adrenalectomy (Adx) and adrenalectomy plus glucocorticoid replacement therapy on rat cardiac contractile protein ATPase activities. The Ca2+-dependent Mg-ATPase activity of myofibrils isolated from rat ventricles 3 weeks postadrenalectomy (Adx) was significantly decreased at all pCa2+ concentrations (P less than 0.01), compared to sham-operated (SO) rats. Similarly, Ca2+-, K+-EDTA, and actin-activated myosin ATPase activities of Adx rat hearts were markedly decreased below that of SO rats (P less than 0.01). Dexamethasone administration to Adx rats prevented the decrease of Ca2+- and K+-ATPase activities of myosin, but not of myofibrillar Ca2+-dependent Mg-ATPase or actin-activated myosin Mg-ATPase activities. These studies suggest that glucocorticoid insufficiency induced by adrenalectomy results in altered myocardial contractile protein ATPase activity which may underlie impaired cardiac performance.  相似文献   

3.
In vertebrate striated muscle, troponon-tropomyosin is responsible, in part, not only for transducing the effect of calcium on contractile protein activation, but also for inhibiting actin and myosin interaction when calcium is absent. The regulatory troponin (Tn) complex displays several molecular and calcium binding variations in cardiac muscles of different species and undergoes genetic changes with development and in various pathologic states.Extensive reviews on the role of tropomyosin (Tm) and Tn in the regulation of striated muscle contraction have been published describing the molecular mechanisms involved in contractile protein regulation. In our studies, we have found an increase in Mg2+ ATPase activity in cardiac myofibrils from dystrophic hamsters and in rats with chronic coronary artery narrowing. The abnormalities in myofibrillar ATPase activity from cardiomyopathic hamsters were largely corrected by recombining the preparations with a TnTm, complex isolated from normal hamsters indicating that the TnTm, may play a major role in altered myocardial function. We have also observed down regulation of Ca2+ Mg2+ ATPase of myofibrils from hypertrophic guinea pig hearts, myocardial infarcted rats and diabetic-hypertensive rat hearts. In myosin from diabetic rats, this abnormality was substantially corrected by adding troponin-tropomyosin complex from control hearts. All of these disease models are associated with decreased ATPase activities of pure myosin and in the case of rat and hamster models, shifts of myosin, heavy chain from alpha to beta predominate.In summary, there are three main troponin subunit components which might alter myofibrillar function however, very few direct links of molecular alterations in the regulatory proteins to physiologic and pathologic function have been demonstrated so far.  相似文献   

4.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

5.
E-1020 is a cardiotonic agent that acts as a cyclic-AMP phosphodiesterase inhibitor but also may have actions which alter myofilament response to Ca2+. To identify direct actions of E-1020 on cardiac contractile proteins, effects of E-1020 on myofibrillar Ca2+ dependent MgATPase and force generation in chemically skinned fiber bundles were measured. In bovine cardiac myofibrils, E-1020 (100 M) significantly increased myofilament Ca2+ sensitivity and Ca2+-dependent ATPase activity at submaximal pCa values. At pCa 6.75, E-1020 significantly increased ATPase activity in bovine (10–100 pM) and canine (1–100 pM) cardiac myofibrils but had no effect on rat cardiac myofibrils. Moreover, in one population of canine ventricular fiber bundles, E-1020 (0.0–10 M) significantly increased isometric tension at pCa 6.5 and 6.0, whereas in another population of bundles E-1020 had no effect on tension. In no case was resting (pCa 8.0) or maximal tension (pCa 4.5) increased by E-1020. Measurements of Ca2+ binding to canine ventricular skinned fiber preparations demonstrated that E-1020 does not alter the affinity of myofilament troponin C for Ca2+. We conclude that part of the mechanism by which E-1020 acts as an inotropic agent may involve alterations in the responsiveness of contractile proteins to Ca2+. The lack of effect of E-1020 on some preparations may be dependent on isoform populations of myofilament proteins.  相似文献   

6.
After prolonged ischemia followed by reperfusion of the isolated rat heart, irreversible heart failure is associated with creatine kinase leakage from the cells. The possible implications of MM creatine kinase leakage from myofibrillar compartments on the contractile properties of ventricular muscle have been studied in control versus ischemic hearts. Total creatine kinase activity decreased in ischemic cells while creatine kinase and ATPase activities were not modified in isolated myofibrils. The efficiency of creatine kinase and phosphocreatine in the relaxation of rigor tension in skinned ventricular preparations was not changed after ischemia. Furthermore, neither the pCa/tension relationship nor the rate of tension development following length changes were modified by ischemia. These results show that the contractile properties of myofilaments as well as the functional coupling between myosin ATPase and creatine kinase are preserved in ischemic hearts suffering irreversible contractile failure.  相似文献   

7.
Conditions are described for the preparation of functional myofibrils and myosin light chains from freeze-clamped beating hearts with the state of light chain phosphorylation chemically ‘frozen’ during the extraction procedure. Myofibrils were shown to be functionally intact by measurement of Ca2+ binding and ATPase activity. Highly purified cardiac myosin light chains could be routinely isolated from myofibrillar preparations using ethanol fractionation together with ion-exchange chromotography. Analysis of light chains for covalent phosphate indicated that basal levels of phosphorylation of the 18?20 000 dalton light chain of myosin in rabbit hearts beating in situ or in a perfusion apparatus were 0.3–0.4 mol/mol. Covalent phosphate content of the light chain fraction did not change during perfusion of hearts with 10 μM epinephrine.  相似文献   

8.
Phosphorylation of myofibrillar and sacroplasmic-reticulum (SR) proteins was studied in Langendorff-perfused rabbit hearts subjected to various inotropic interventions. Stimulation of hearts with isoprenaline resulted in the phosphorylation of both troponin I (TnI) and C-protein in myofibrils and phospholamban in SR. Phosphorylation of phospholamban could be reversed by a 15 min perfusion with drug-free buffer, after a 1 minute pulse perfusion with isoprenaline, at which time the mechanical effects of isoprenaline stimulation had also been reversed. However, both TnI and C-protein remained phosphorylated at this time. Moreover, the inhibition of Ca2+ activation of the Mg2+-dependent ATPase (Mg-ATPase) activity associated with myofibrillar phosphorylation persisted in myofibrils prepared from hearts frozen after 15 min of washout of isoprenaline. To assess the contribution of C-protein phosphorylation in the decrease of Ca2+ activation of the myofibrillar Mg-ATPase activity, we reconstituted a regulated actomyosin system in which only C-protein was phosphorylated. In this system, C-protein phosphorylation did not contribute to the decrease in Ca2+ activation of Mg-ATPase activity, indicating that TnI phosphorylation is responsible for the diminished sensitivity of the myofibrils to Ca2+. These observations support the hypothesis that phospholamban phosphorylation plays a more dominant role than TnI or C-protein phosphorylation in the mechanical response of the mammalian heart to beta-adrenergic stimulation.  相似文献   

9.
This study tested the reversal of subcellular remodelling in heart failure due to myocardial infarction (MI) upon treatment with losartan, an angiotensin II receptor antagonist. Twelve weeks after inducing MI, rats were treated with or without losartan (20 mg/kg; daily) for 8 weeks and assessed for cardiac function, cardiac remodelling, subcellular alterations and plasma catecholamines. Cardiac hypertrophy and lung congestion in 20 weeks MI‐induced heart failure were associated with increases in plasma catecholamine levels. Haemodynamic examination revealed depressed cardiac function, whereas echocardiographic analysis showed impaired cardiac performance and marked increases in left ventricle wall thickness and chamber dilatation at 20 weeks of inducing MI. These changes in cardiac function, cardiac remodelling and plasma dopamine levels in heart failure were partially or fully reversed by losartan. Sarcoplasmic reticular (SR) Ca2+‐pump activity and protein expression, protein and gene expression for phospholamban, as well as myofibrillar (MF) Ca2+‐stimulated ATPase activity and α‐myosin heavy chain mRNA levels were depressed, whereas β‐myosin heavy chain expression was increased in failing hearts; these alterations were partially reversed by losartan. Although SR Ca2+‐release activity and mRNA levels for SR Ca2+‐pump were decreased in failing heart, these changes were not reversed upon losartan treatment; no changes in mRNA levels for SR Ca2+‐release channels were observed in untreated or treated heart failure. These results suggest that the partial improvement of cardiac performance in heart failure due to MI by losartan treatment is associated with partial reversal of cardiac remodelling as well as partial recovery of SR and MF functions.  相似文献   

10.
Homozygous recessive cardiac mutant gene c in the axolotl, Ambystoma mexicanum, results in a failure of the embryonic heart to initiate beating. Previous studies show that mutant axolotl hearts fail to form sarcomeric myofibrils even though hearts from their normal siblings exhibit organized myofibrils beginning at stage 34–35. In the present study, the proteins titin and myosin are studied using normal (+/+) axolotl embryonic hearts at stages 26–35. Additionally, titin is examined in normal (+/c) and cardiac mutant (c/c) embryonic axolotl hearts using immunofluorescent microscopy at stages 35–42. At tailbud stage-26, the ventromedially migrating sheets of precardiac mesoderm appear as two-cell-layers. Myosin shows periodic staining at the cell peripheries of the presumptive heart cells at this stage, whereas titin is not yet detectable by immunofluorescent microscopy. At preheartbeat stages 32–33, a myocardial tube begins to form around the endocardial tube. In some areas, periodic myosin staining is found to be separated from the titin staining; other areas in the heart at this stage show a co-localization of the two proteins. Both titin and myosin begin to incorporate into myofibrils at stage 35, when normal hearts initiate beating. Additionally, areas with amorphous staining for both proteins are observed at this stage. These observations indicate that titin and myosin accumulate independently at very early premyofibril stages; the two proteins then appear to associate closely just before assembly into myofibrils. Staining for titin in freshly frozen and paraffin-embedded tissues of normal embryonic hearts at stages 35, 39, and 41 reveals an increased organization of the protein into sarcomeres as development progresses. The mutant siblings, however, first show titin staining only limited to the peripheries of yolk platelets. Although substantial quantities of titin accumulate in mutant hearts at later stages of development (39 and 41), it does not become organized into myofibrils as in normal cells at these stages. © 1994 Wiley-Liss, Inc.  相似文献   

11.
In order to examine the relationship between heart dysfunction and subcellular abnormalities as well as molecular mechanisms during the development of diabetes, we studied changes in cardiac performance, myofibrillar as well as sarcoplasmic reticular (SR) activities, and cardiac gene expression at different time intervals upon inducing diabetes in rats by an injection of alloxan (65 mg/kg; i.v.). Cardiac dysfunction was associated with a depression in myofibrillar Ca2+-stimulated ATPase and changes in myosin isozyme composition at 2-12 weeks of inducing diabetes. A reduction in SR Ca2+-uptake and Ca2+-pump (SERCA2) activities was evident at 10 days to 12 weeks of inducing diabetes. Alterations in cardiac function during 2-12 weeks of diabetes show a linear relationship with changes in myofibrils and SR membranes. Furthermore, alterations in cardiac function as well as myofibrillar and SR activities in 4 week diabetic animals were normalized upon treatment with insulin for 4 weeks. The steady-state mRNA abundance for -myosin heavy chain in the heart was decreased at 2 and 3 weeks but was unchanged at 5 and 6 weeks, whereas mRNA levels for -myosin heavy chain remained elevated during 2-6 weeks after inducing diabetes. SERCA2 mRNA abundance in diabetic heart was significantly increased at 3 and 5 weeks but was unaltered at 2 and 6 weeks. These results support the view that heart dysfunction in diabetes may be a consequence of myofibrillar and SR abnormalities; however, defects in myofibrillar proteins, unlike those in the SR membranes, appear to be due to changes in their gene expression.  相似文献   

12.
Immunofluorescence studies of normal and Trypanosoma cruzi-infected primary cultures of heart muscle cells were performed to gather information about the arrangement of myofibrillar components during the intracellular life cycle of this parasite. By using a panel of monoclonal antibodies against various myofibrillar proteins, a progressive disruption and loss of contractile proteins (such myosin and actin) of the host cell was detected during infection. The host cell formed a loose network of myofibrillar proteins around the parasites. Breakdown of the myofibrils occurred in regions where the parasites were present, and heavily infected cells showed myofibrillar proteins at their periphery. In parallel, we investigated the effect of T. cruzi infection on intracellular calcium levels by using a Ca2+ fluorescent indicator (confocal microscopy). Infected cardiomyocytes displayed a marked impairment in contractility, and calcium influxes became irregular and less intense when compared with those of non-infected cells. Our results demonstrate that T. cruzi infection dramatically affects calcium fluxes and causes myofibrillar breakdown disturbing cardiomyocyte contractility.Financial support through grants and scholarships from the Brazilian funding agencies FAPESP, CNPq, and CAPES is gratefully acknowledged.  相似文献   

13.
The kinetics of Ca2+-dependent conformational changes of human cardiac troponin (cTn) were studied on isolated cTn and within the sarcomeric environment of myofibrils. Human cTnC was selectively labeled on cysteine 84 with N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole and reconstituted with cTnI and cTnT to the cTn complex, which was incorporated into guinea pig cardiac myofibrils. These exchanged myofibrils, or the isolated cTn, were rapidly mixed in a stopped-flow apparatus with different [Ca2+] or the Ca2+-buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid to determine the kinetics of the switch-on or switch-off, respectively, of cTn. Activation of myofibrils with high [Ca2+] (pCa 4.6) induced a biphasic fluorescence increase with rate constants of >2000 s−1 and ∼330 s−1, respectively. At low [Ca2+] (pCa 6.6), the slower rate was reduced to ∼25 s−1, but was still ∼50-fold higher than the rate constant of Ca2+-induced myofibrillar force development measured in a mechanical setup. Decreasing [Ca2+] from pCa 5.0-7.9 induced a fluorescence decay with a rate constant of 39 s−1, which was approximately fivefold faster than force relaxation. Modeling the data indicates two sequentially coupled conformational changes of cTnC in myofibrils: 1), rapid Ca2+-binding (kB ≈ 120 μM−1 s−1) and dissociation (kD ≈ 550 s−1); and 2), slower switch-on (kon = 390s−1) and switch-off (koff = 36s−1) kinetics. At high [Ca2+], ∼90% of cTnC is switched on. Both switch-on and switch-off kinetics of incorporated cTn were around fourfold faster than those of isolated cTn. In conclusion, the switch kinetics of cTn are sensitively changed by its structural integration in the sarcomere and directly rate-limit neither cardiac myofibrillar contraction nor relaxation.  相似文献   

14.
The risks associated with hormone replacement therapy, especially cardiac diseases in postmenopausal women, have prompted extensive studies for other preventive or therapeutic alternatives. We investigated the cardioprotective effects of exercise training on the changes in cardiac myofilament Ca2+ activation in 10-wk-old ovariectomized rats. The exercise groups were subjected to a 9-wk running program on a motor-driven treadmill 1 wk after surgery. The relationship between pCa (-log molar free Ca2+ concentration) and myofibrillar MgATPase activity of exercise-sham myofibrils or exercise-ovariectomized myofibrils was the same and could not be distinguished from that of sedentary-sham control hearts. In contrast, a significant suppression in maximum MgATPase activity and a leftward shift of pCa50 (half-maximally activating pCa) in the pCa-ATPase activity relationship were detected in sedentary-ovariectomized rats. Exercise training also prevented the shift in myosin heavy chain (MHC) isoforms toward beta-MHC in ovariectomized hearts. The upregulation of beta1-adrenergic receptors in the left ventricular membranes of ovariectomized rat hearts, as measured by receptor binding and immunoblot analyses, was no longer observed in exercise-ovariectomized hearts. Immunoblot analyses of heat shock protein (HSP) 72, an inducible form of HSP70, demonstrated a significant downregulation in ovariectomized hearts. Exercise training in ovariectomized rats completely reversed the expression of HSP72 to the same level as sham controls. Our results clearly indicate the cardioprotective effects of exercise training on changes in cardiac myofilament Ca2+ activation in ovariectomized rats. Alterations in expression of beta1-adrenergic receptors and HSP72 may, in part, play a mechanistic role in the cardioprotective effects.  相似文献   

15.
Summary A long-term cell culture system for adult cardiomyopathic hamster cardiac muscle cells has been established. The diseased and control hearts were dissociated into single cell suspension with the modifications of our previous technique using collagenase and hyaluronidase as applied to the dissociation of the adult rat heart. The postperfusion of the diseased heart with Krebs-Ringer phosphate buffer and bovine serum albumin was very helpful in obtaining greater yield of viable diseased muscle cells; the cells were cultured for 4 wk. Approximately 60% of the myocytes from the diseased heart and 85% of the myocytes from the normal heart attached to the substrates and survived throughout the culture period. Approximately 60 to 70% of the cardiac myocytes from the diseased and control hearts were bi- or multinucleated; 30% of the diseased and 80% of the normal myocytes showed rhythmic contractility. Electron microscopy revealed the presence of two kinds of cardiac muscle cells in the diseased cell culture on the basis of their myofibril content: one with scanty myofibrils and another with abundant myofibrils. Myocytes with sparse myofibrils showed certain characteristic features that included autophagic vacuoles, amorphous matrix of fine filamentous texture, scattered strips of myofibrils, and abnormal organization of the Z-line. Cardiac muscle cells with abundant myofibrillar content contained unorganized myofibrils in certain sarcomeres. These studies demonstrate the feasibility of maintaining diseased cardiac muscle cells from adult cardiomyopathic hamsters for at least 4 wk in monolayer culture. This study was supported by a grant from the American Heart Association of Michigan, National Institutes of Health grant HL-25482, and by an Oakland University Biomedical Research Support Grant.  相似文献   

16.
A number of investigations in humans and animals suggest that there may be intrinsic sex-associated differences in cardiac function. Using left atrial preparations from male and female rat hearts, we examined differences in myocardial function and response to adrenergic agonists. Contractile parameters were measured in isolated atria by conventional isometric methods in the absence or presence of isoproterenol or phenylephrine. Responsiveness to Ca2+ was measured in detergent-skinned atrial fibers and actomyosin ATPase activity was measured in isolated myofibrils. Tetanic contractions were generated by treating the atrium with ryanodine followed by high frequency stimulation. Developed force was greater and maximal rates of contraction and relaxation were more rapid in the female atrium. The relationship between Ca2+ concentration and force in both intact atria and detergent-skinned atrial fibers in females fell to the left of that for males. At low Ca2+ concentrations, skinned fibers from female atria generated more force and myofibrils from female atria had higher myosin ATPase activity than males. Tetanic contraction in the presence of high extracellular Ca2+ was greater in female atria. Male atrium had larger inotropic responses to isoproterenol and to phenylephrine, but drug-elicited cAMP and inositol phosphate production did not differ between sexes. The results demonstrate sex-related differences in atrial function that can be partially explained by greater myofibrillar Ca2+-sensitivity in females. A potential contribution of sarcolemmal Ca2+ influx is suggested by greater tetanic contraction in ryanodine-treated female atrium. The larger response of males to adrenergic stimulation does not appear to be explained by higher production of relevant second messengers. Future studies will investigate the role of sex hormones in these sexually dimorphic responses and may indicate a need for gender-specific therapeutic interventions for myocardial dysfunction.  相似文献   

17.
Mitochondrial contact sites (MiCS) are dynamic structures involved in high capacity transport of energy from mitochondria into the cytosole. Previous studies revealed that in normal conditions the actual number of MiCS is in correlation with the energy requirements of the heart, particularly with those for its contractile work. Although the detailed mechanisms of signalling between the processes of energy utilisation and MiCS formation in the heart are not yet elucidated, it is known that intracellular Ca2+ transients are intimately involved in this crosstalk. The present study is devoted to investigation of Ca2+-linked MiCS formation in healthy adult hearts and in hearts with modified Ca2+-handling such as in developing, in juvenile and diabetic myocardium. Experiments were performed on hearts of healthy rats on the 22nd embryonal day, 1st, 4th, 7th and 14th postnatal days as well as on adult hearts. Diabetic hearts were investigated on the 8th day after streptozotocin injection (45 mg.kg–1 i.v.) to adult rats. Intracellular Ca2+ movements were affected by modulation of Ca2+ concentration in perfusion solution (1.6 or 2.2 mmol.l–1) in isolated, Langendorff-perfused hearts, by calcium paradox (CaP) or by replacing of Ca2+ by Cd2+ ions. Elevation of extracellular Ca2+ was reflected by 30.1, 10.4 and 24.1% increase in intracellular free Ca2+ concentration in healthy adult, diabetic and 14-day old hearts respectively. In developing hearts the amount of MiCS was culminating on the 4th postnatal day. In adult hearts, elevated calcium in the perfusion solution, CaP as well as diabetes led to a significant increase in the amounts of MiCS formed (58.1, 77.2 and 86.5% respectively; p < 0.05). Diabetic and 14-day old hearts naturally exhibited amounts of MiCS comparable to those obtained by Ca2+-stimulation of MiCS formation in adult healthy hearts. In contrast to healthy controls, perfusion of diabetic and 14-day old hearts with elevated Ca2+ as well as induction of CaP exerted little influence on MiCS formation (4.4 and 8.2% for elevated Ca2+; 2.9 and 10.7% for CaP; p > 0.05). A replacement of Ca2+ by Cd2+ ions lowered the amount of MiCS in healthy adult and diabetic hearts (61 and 52.2%; p < 0.05). In conclusion, during development, the formation of MiCS may be influenced by both, permanent stimulation by Ca2+-signalling and the availability of mCPK. In healthy adult hearts the amount of MiCS is modulated by intracellular Ca2+ transients in response to changes in extracellular Ca2+ concentration. In diabetic hearts the modulation of MiCS formation is naturally attenuated, apparently as a consequence of persisting alterations in Ca2+-handling.  相似文献   

18.
In order to compare the role of the Ca2+-receptive protein (troponin), in the characteristic myofibrillar contractile response of chicken fast and slow skeletal muscles, the troponin in both kinds of myofibrils were partially exchanged, under slightly acidic conditions. The Ca2+- or Sr2+-activation of the ATPase of fast (or slow) skeletal myofibrils hybridized with slow (or fast) skeletal troponin profiles were also investigated. The results indicated that the Ca2+- or Sr2+-affinity of the myofibrillar ATPase activity were related to the species of troponin. This procedure for replacing troponin in myofibrils under physiological conditions in thus considered to be useful for the study of the Ca2+-regulatory mechanism in myofibrillar contraction.  相似文献   

19.
A Ca2+-activated proteolytic enzyme 1 that partially degrades myofibrials was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibris prepared from muscles vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and α-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occuring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additionally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

20.
To investigate the mechanism underlying postischemic contractile dysfunction (myocardial stunning) we examined myocardial sulfhydryl group content, myofibrillar Ca2+-dependent Mg2+-ATPase activity and protein profile after global ischemia and reperfusion. The Langerdorff-perfused rabbit hearts were subjected to 15 min normothermic ischemia followed by 10 min reperfusion and myofibrils were isolated from homogenates of left ventricular tissues. Depressed contractile function during reperfusion was accompanied by a decrease in total sulfhydryl group content. However, myofibrillar protein profile was unchanged and Western immunoblotting analysis showed no significant differences in troponin I immunoreactive bands between control and stunned hearts. Likewise, myofibrillar Mg2+-ATPase activity was unaltered after ischemia and reperfusion. We conclude that myocardial stunning is not caused by altered myofibrillar function and protein degradation but may be partly due to the oxidative modification of as yet undefined proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号