首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the experiments here, the detailed kinetic properties of the Ca(2+)-independent, depolarization-activated outward currents (Iout) in enzymatically dispersed adult rat atrial myocytes were studied. Although there is only slight attenuation of peak Iout during brief (100 ms) voltage steps, substantial decay is evident during long (10 s) depolarizations. The analyses here reveal that current inactivation is best described by the sum of two exponential components, which we have termed IKf and IKs to denote the fast and slow components, respectively, of Iout decay. At all test potentials, IKf inactivates approximately 20-fold more rapidly than IKs. Neither the decay time constants nor the fraction of Iout remaining at the end of 10-s depolarizations varies over the potential range of 0 to +50 mV, indicating that the rates of inactivation and recovery from inactivation are voltage independent. IKf recovers from inactivation completely, independent of the recovery of IKs, and IKf recovers approximately 20 times faster than IKs. The pharmacological properties of IKf and IKs are similar: both components are sensitive to 4-aminopyridine (1-5 mM) and both are relatively resistant to externally applied tetraethylammonium (50 mM). Taken together, these findings suggest that IKf and IKs correspond to two functionally distinct K+ currents with similar voltage-dependent properties and pharmacologic sensitivities, but with markedly different rates of inactivation and recovery from inactivation. From the experimental data, several gating models were developed in which voltage-independent inactivation is coupled either to channel opening or to the activation of the individual channel subunits. Experimental testing of predictions of these models suggests that voltage-independent inactivation is coupled to activation, and that inactivation of only a single subunit is required to result in functional inactivation of the channels. This model closely approximates the properties of IKf and IKs, as well as the composite outward currents, measured in adult rat atrial myocytes.  相似文献   

2.
Whole-cell and single-channel inwardly-rectifying K+ currents (IK1) of early (3-day-old) and late (17-day-old) embryonic chick ventricular myocytes were compared to ascertain whether there are developmental changes in the properties of this conductance. The magnitude of the IK1 conductance in the early myocytes was small, but it was increased about five-fold in the older embryonic myocytes. It was found that the density of inwardly-rectifying K+ channels was greater (in the surface membrane) of the 17-day than in the 3-day embryonic myocyte. In addition, the single channel conductance for 17-day myocytes was several-fold larger than for the 3-day myocytes. These results suggest that cardiac inward rectifier channels may not only proliferate in number, but may also undergo structural alterations during development.  相似文献   

3.
Summary Using the patch-clamp technique, we recorded whole-cell calcium current from isolated cardiac myocytes dissociated from the apical ventricles of 7-day and 14-day chick embryos. In 70% of 14-day cells after 24 hr in culture, two component currents could be separated from totalI Ca activated from a holding potential (V h) of –80 mV. L-type current (I L) was activated by depolarizing steps fromV h –30 or –40 mV. The difference current (I T) was obtained by subtractingI L, fromI Ca.I T could also be distinguished pharmacologically fromI L in these cells.I T was selectively blocked by 40–160 m Ni2+, whereasI L was suppressed by 1 m D600 or 2 m nifedipine. The Ni2+-resistant and D600-resistant currents had activation thresholds and peak voltages that were near those ofI T andI L defined by voltage threshold, and resembled those in adult mammalian heart. In 7-day cells,I T andI L could be distinguished by voltage threshold in 45% (S cells), while an additional 45% of 7-day cells were nonseparable (NS) by activation voltage threshold. Nonetheless, in mostNS cells,I Ca was partly blocked by Ni2+ and by D600 given separately, and the effects were additive when these agents were given together. Differences among the cells in the ability to separateI T andI L by voltage threshold resulted largely from differences in the position of the steady-state inactivation and activation curves along the voltage axis. In all cells at both ages in which the steady-state inactivation relation was determined with a double-pulse protocol, the half-inactivation potential (V 1/2) of the Ni2+-resistant currentI L averaged –18 mV. In contrast,V 1/2 of the Ni2+-sensitiveI T was –60 mV in 14-day cells, –52 mV in 7-dayS cells, and –43 mV in 7-day NS cells. The half-activation potential was near –2 mV forI L at both ages, but that ofI T was –38 mV in 14-day and –29 mV in 7-day cells. Maximal current density was highly variable from cell to cell, but showed no systematic differences between 7-day and 14-day cells. These results indicate that the main developmental change that occurs in the components ofI Ca is a negative shift with, embryonic age in the activation and inactivation relationships ofI T along the voltage axis.  相似文献   

4.
Summary T-type calcium channels (I T channels) were studied in cell-attached patch electrode recordings from the ventricular cell membrane of 14-day embryonic chick heart. All experiments were performed in the absence of Ca2+ with Na+ (120mm) as the charge carrier.I T channels were distinguished from L-type calcium channels (I L) by their more negative activation and inactivation potential ranges; their smaller unitary slope conductance (26 pS), and their insensitivity to isoproterenol or D600. Inactivation kinetics were voltage dependent. The time constant of inactivation was 37 msec when the membrane potential was depolarized 40 mV from rest (R+40 mV), and 20 msec atR+60 mV. The frequency histogram of channel open times 0 was fit by a single-exponential curve while that of closed times c was biexponeintial. o was the same atR+40 mV andR+60 mV whereas c was shortened atR+60 mV. The open-state probability (P o) increased with depolarization: 0.35 atR+40 mV, 0.8 atR+60 mV and 0.88 atR+80 mV. This increase inP o at depolarized potentials could be accounted for by the decrease in c.  相似文献   

5.
In the experiments here, the developmental expression of the functional Ca(2+)-independent, depolarization-activated K+ channel currents, Ito and IK, and of the voltage-gated K+ channel (Kv) alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2 in rat ventricular myocytes were examined quantitatively. Using the whole-cell patch clamp recording method, the properties and the densities of Ito and IK in ventricular myocytes isolated from postnatal day 5 (P5), 10 (P10), 15 (P15), 20 (P20), 25 (P25), 30 (P30), and adult (8-12 wk) rats were characterized and compared. These experiments revealed that mean Ito densities increase fourfold between birth and P30, whereas IK densities vary only slightly. Neither the time- nor the voltage-dependent properties of the currents vary measurably, suggesting that the subunits underlying functional Ito and IK channels are the same throughout postnatal development. In parallel experiments, the developmental expression of each of the voltage-gated K+ channel alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2, was examined quantitatively at the mRNA and protein levels using subunit-specific probes. RNase protection assays revealed that Kv1.4 message levels are high at birth, increase between P0 and P10, and subsequently decrease to very low levels in adult rat ventricles. The decrease in message is accompanied by a marked reduction in Kv1.4 protein, consistent with our previous suggestion that Kv1.4 does not contribute to the formation of functional K+ channels in adult rat ventricular myocytes. In contrast to Kv1.4, the mRNA levels of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 increase (three- to five- fold) between birth and adult. Western analyses, however, revealed that the expression patterns of these subunits proteins vary in distinct ways: Kv1.2 and Kv4.2, for example, increase between P5 and adult, whereas Kv1.5 remains constant and Kv2.1 decreases. Throughout development, therefore, there is a mismatch between the numbers of Kv alpha subunits expressed and the functional voltage-gated K+ channel currents distinguished electrophysiologically in rat ventricular myocytes. Alternative experimental approaches will be required to define directly the Kv alpha subunits that underlie functional voltage- gated K+ channels in these (and other) cells. In addition, the finding that Kv alpha subunit protein expression levels do not necessarily mirror mRNA levels suggests that caution should be exercised in attempting functional interpretations of observed changes in mRNA levels alone.  相似文献   

6.
Tamoxifen is an estrogen receptor antagonist used in the treatment of breast cancer. However, tamoxifen has been shown to induce QT prolongation of the electrocardiogram, thereby potentially causing life-threatening polymorphic ventricular arrhythmias. The purpose of the present study was to elucidate the electrophysiological mechanism(s) that underlie the arrhythmogenic effects of tamoxifen. We used standard ruptured whole cell and perforated patch-clamping techniques on rat ventricular myocytes to investigate the effects of tamoxifen on cardiac action potential (AP) waveforms and the underlying K+ currents. Tamoxifen (3 micromol/l) markedly prolonged AP duration, decreased maximal rate of depolarization, and decreased resting membrane potential. At this concentration, tamoxifen significantly depressed the Ca2+-independent transient outward K+ current (Ito), sustained outward delayed rectifier K+ current (Isus), inward rectifier K+ current (IK1), and Na+ current (INa) in the myocytes. Lower concentrations of tamoxifen (1 micromol/l) also decreased the resting membrane potential and significantly depressed IK1 to 79 +/- 5% (n = 5; at -120 mV) of pretreatment values. The results of this study indicate that inhibition of Ito, Isus, and IK1 by tamoxifen may underlie AP prolongation in cardiac myocytes and thereby contribute to prolonged QT interval observed in patients.  相似文献   

7.
Nonlinear or asymmetric charge movement was recorded from single ventricular myocytes cultured from 17-d-old embryonic chick hearts using the whole-cell patch clamp method. The myocytes were exposed to the appropriate intracellular and extracellular solutions designed to block Na+, Ca2+, and K+ ionic currents. The linear components of the capacity and leakage currents during test voltage steps were eliminated by adding summed, hyperpolarizing control step currents. Upon depolarization from negative holding potentials the nonlinear charge movement was composed of two distinct and separable kinetic components. An early rapidly decaying component (decay time constant range: 0.12-0.50 ms) was significant at test potentials positive to -70 mV and displayed saturation above 0 mV (midpoint -35 mV; apparent valence 1.6 e-). The early ON charge was partially immobilized during brief (5 ms) depolarizing test steps and was more completely immobilized by the application of less negative holding potentials. A second slower-decaying component (decay time constant range: 0.88-3.7 ms) was activated at test potentials positive to -60 mV and showed saturation above +20 mV (midpoint -13 mV, apparent valence 1.9 e-). The second component of charge movement was immobilized by long duration (5 s) holding potentials, applied over a more positive voltage range than those that reduced the early component. The voltage dependencies for activation and inactivation of the Na+ and Ca2+ ionic currents were determined for myocytes in which these currents were not blocked. There was a positive correlation between the voltage dependence of activation and inactivation of the Na+ and Ca2+ ionic currents and the activation and immobilization of the fast and slow components of charge movement. These complementary kinetic and steady-state properties lead to the conclusion that the two components of charge movement are associated with the voltage-sensitive conformational changes that precede Na+ and Ca2+ channel openings.  相似文献   

8.
Superfusion with 8-bromo-cyclic GMP or intracellular injection of cyclic GMP inhibits calcium-dependent slow action potentials in embryonic chick or guinea pig ventricular cells, suggesting that cyclic GMP inhibits calcium currents. Recently, cyclic GMP has been shown to reduce cyclic AMP-stimulated calcium currents in voltage-clamped ventricular myocytes. Since earlier results in intact cells had suggested that cyclic GMP might inhibit basal (i.e., unstimulated by cyclic AMP) calcium currents, we directly investigated the effect of 8-bromo-cyclic GMP on basal calcium channel currents (using barium as the charge carrier) in voltage-clamped ventricular myocytes isolated from embryonic chick hearts. Superfusion with 1 mM 8-bromo-cyclic GMP (without prior cyclic AMP elevation) progressively decreased peak calcium channel currents (-68% at 15 min after the onset of drug exposure). In contrast, the currents were unchanged during 15 min superfusion with control solution, or 1 mM 8-bromo-GMP (the noncyclic inactive analog of 8-bromo-cyclic GMP). The present results in voltage-clamped embryonic chick heart cells indicate that cyclic GMP can inhibit basal calcium channel currents, apparently through a cyclic AMP-independent mechanism.  相似文献   

9.
In the experiments here, the time- and voltage-dependent properties of the Ca2+-independent, depolarization-activated K+ currents in adult mouse ventricular myocytes were characterized in detail. In the majority (65 of 72, approximately 90%) of cells dispersed from the ventricles, analysis of the decay phases of the outward currents revealed three distinct K+ current components: a rapidly inactivating, transient outward K+ current, Ito,f (mean +/- SEM taudecay = 85 +/- 2 ms); a slowly (mean +/- SEM taudecay = 1,162 +/- 29 ms) inactivating K+ current, IK,slow; and a non inactivating, steady state current, Iss. In a small subset (7 of 72, approximately 10%) of cells, Ito,f was absent and a slowly inactivating (mean +/- SEM taudecay = 196 +/- 7 ms) transient outward current, referred to as Ito,s, was identified; the densities and properties of IK,slow and Iss in Ito,s-expressing cells are indistinguishable from the corresponding currents in cells with Ito,f. Microdissection techniques were used to remove tissue pieces from the left ventricular apex and from the ventricular septum to allow the hypothesis that there are regional differences in Ito,f and Ito,s expression to be tested directly. Electrophysiological recordings revealed that all cells isolated from the apex express Ito,f (n = 35); Ito,s is not detected in these cells (n = 35). In the septum, by contrast, all of the cells express Ito,s (n = 28) and in the majority (22 of 28, 80%) of cells, Ito,f is also present. The density of Ito,f (mean +/- SEM at +40 mV = 6.8 +/- 0.5 pA/pF, n = 22) in septum cells, however, is significantly (P < 0.001) lower than Ito,f density in cells from the apex (mean +/- SEM at +40 mV = 34.6 +/- 2.6 pA/pF, n = 35). In addition to differences in inactivation kinetics, Ito,f, Ito,s, and IK,slow display distinct rates of recovery (from inactivation), as well as differential sensitivities to 4-aminopyridine (4-AP), tetraethylammonium (TEA), and Heteropoda toxin-3. IK,slow, for example, is blocked selectively by low (10-50 microM) concentrations of 4-AP and by (>/=25 mM) TEA. Although both Ito,f and Ito,s are blocked by high (>100 microM) 4-AP concentrations and are relatively insensitive to TEA, Ito,f is selectively blocked by nanomolar concentrations of Heteropoda toxin-3, and Ito,s (as well as IK,slow and Iss) is unaffected. Iss is partially blocked by high concentrations of 4-AP or TEA. The functional implications of the distinct properties and expression patterns of Ito,f and Ito,s, as well as the likely molecular correlates of these (and the IK,slow and Iss) currents, are discussed.  相似文献   

10.
11.
Summary The voltage-dependent properties of inwardly rectifying potassium channels were studied in adult and neonatal rat ventricular myocytes using patch voltage-clamp techniques. Inward rectification was pronounced in the single-channel currentvoltage relation and outward currents were not detected at potentials positive to the calculated reversal potential for potassium (E k). Single-channel currents having at least three different conductances were observed and the middle one was predominant. Its single-channel conductance was nonlinear ranging from 20 to 40 pS. Its open-time distribution was fit by a single exponential and the time constants decreased markedly with hyperpolarization fromE k. The distribution of the closed times required at least two exponentials for fitting, and their taus were related to the bursting behavior displayed at negative potentials. The steady-state probability of being open (P o) for this channel was determined from the single-channel records; in symmetrical isotonic K solutionsP o was 0.73 at –60 mV, but fell to 0.18 at –100 mV. The smaller conductance was about one-half the usual value and the open times were greatly prolonged. The large conductance was about 50 percent greater than the usual value and the open times were very brief. TheP o(V) relation, the kinetics and the conductance of the predominant channel account for most of the whole cell inwardly rectifying current. The kinetics suggest that an intrinsic K+-dependent mechanism may control the gating, and the conductance of this channel. In the steady state, the opening and closing probabilities for the two smaller channels were not independent of each other, suggesting the possibility of a sub-conductance state or cooperativity between different channels.  相似文献   

12.
Summary A quantitative analysis of the time and voltage dependence of outward-rectifying K+ currents ( ) in guard cells fromVicia faba is described using the whole-cell patch-clamp technique. After step depolarizations from –75 mV to potentials positive to –40 mV, time-dependent outward currents were produced, which have recently been identified as K+ channel currents. This K+ current was characterized according to its time dependence and its steady-state activation. could be described in terms of a Hodgkin-Huxley type conductance. Activation of the current in time was sigmoid and was well fitted by raising the activation variable to the second power. Deactivating tail currents were single exponentials, which suggests that only one conductance underlies this slow outward K+ current. Rates of channel closing were strongly dependent on the membrane potential, while rates of channel opening showed only limited voltage dependence leading to a highly asymmetric voltage dependence for channel closing and opening. The presented analysis provides a quantitative basis for the understanding of channel gating and channel functions in plant cells.  相似文献   

13.
Wu SN  Wu AZ  Sung RJ 《Life sciences》2007,80(4):378-387
The ATP-sensitive K(+) (K(ATP)) channels are known to provide a functional linkage between the electrical activity of the cell membrane and metabolism. Two types of inwardly rectifying K(+) channel subunits (i.e., Kir6.1 and Kir6.2) with which sulfonylurea receptors are associated were reported to constitute the K(ATP) channels. In this study, we provide evidence to show two types of K(ATP) channels with different biophysical properties functionally expressed in isolated rat ventricular myocytes. Using patch-clamp technique, we found that single-channel conductance for the different two types of K(ATP) channels in these cells was 57 and 21 pS. The kinetic properties, including mean open time and bursting kinetics, did not differ between these two types of K(ATP) channels. Diazoxide only activated the small-conductance K(ATP) channel, while pinacidil and dinitrophenol stimulated both channels. Both of these K(ATP) channels were sensitive to block by glibenclamide. Additionally, western blotting, immunochemistry, and RT-PCR revealed two types of Kir6.X channels, i.e., Kir6.1 and Kir6.2, in rat ventricular myocytes. Single-cell Ca(2+) imaging also revealed that similar to dinitrophenol, diazoxide reduced the concentration of intracellular Ca(2+). The present results suggest that these two types of K(ATP) channels may functionally be related to the activity of heart cells.  相似文献   

14.
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes.  相似文献   

15.
Single-channel currents were recorded from ATP-sensitive K+ channels in inside-out membrane patches excised from isolated rat ventricular myocytes. Perfusion of the internal surface of excised membrane patches with solutions which contained between 5 and 100 microM free calcium caused the loss of K+ATP channel activity which was not reversed when the membranes were washed with Ca-free solution. K+ATP channel activity could be recovered by bathing the patches in Mg.ATP. The loss of K+ATP channel activity provoked by internal calcium was a process which occurred over a time scale of seconds. Channel closure evoked by internal ATP was essentially instantaneous. The speed of K+ATP channel inactivation increased with the concentration of calcium. Neither a phosphatase inhibitor (fluoride ions) nor a proteinase inhibitor (leupeptin) had any effect upon the loss of K+ channel activity stimulated by internal calcium.  相似文献   

16.
The cardiac Ca2+-independent transient outward K+ current (Ito), a major repolarizing ionic current, is markedly affected by Cl substitution and anion channel blockers. We reexplored the mechanism of the action of anions on Ito by using whole cell patch-clamp in single isolated rat cardiac ventricular myocytes. The transient outward current was sensitive to blockade by 4-aminopyridine (4-AP) and was abolished by Cs+ substitution for intracellular K+. Replacement of most of the extracellular Cl with less permeant anions, aspartate (Asp) and glutamate (Glu), markedly suppressed the current. Removal of external Na+ or stabilization of F-actin with phalloidin did not significantly affect the inhibitory action of less permeant anions on Ito. In contrast, the permeant Cl substitute Br did not markedly affect the current, whereas F substitution for Cl induced a slight inhibition. The Ito elicited during Br substitution for Cl was also sensitive to blockade by 4-AP. The ability of Cl substitutes to induce rightward shifts of the steady-state inactivation curve of Ito was in the following sequence: NO3 > Cl Br > gluconate > Glu > Asp. Depolymerization of actin filaments with cytochalasin D (CytD) induced an effect on the steady-state inactivation of Ito similar to that of less permeant anions. Fluorescent phalloidin staining experiments revealed that CytD-pretreatment significantly decreased the intensity of FITC-phalloidin staining of F-actin, whereas Asp substitution for Cl was without significant effect on the intensity. These results suggest that the Ito channel is modulated by anion channel(s), in which the actin cytoskeleton may be implicated. transient outward potassium current; anion channel; actin cytoskeleton; myocyte; potassium ion  相似文献   

17.
Potassium ion channels are generally believed to have current-voltage (IV) relations which are linearly related to driving force ( V - E(K)), where V is membrane potential and E(K) is the potassium ion equilibrium potential. Consequently, activation curves for K+ channels have often been measured by normalizing voltage-clamp families of macroscopic K+ currents with (V - E(K)), where V is the potential of each successive step in the voltage clamp sequence. However, the IV relation for many types of K+ channels actually has a non-linear dependence upon driving force which is well described by the Goldman-Hodgkin-Katz relation. When the GHK dependence on (V - E(K)) is used in the normalization procedure, a very different voltage dependence of the activation curve is obtained which may more accurately reflect this feature of channel gating. Novel insights into the voltage dependence of the rapidly inactivating I(A) channels Kv1.4 and Kv4.2 have been obtained when this procedure was applied to recently published results.  相似文献   

18.
Summary The effects of ADP upon the gating of ATP-sensitive K+ channels from rat ventricular myocytes have been investigated by patch-clamp single-channel current recording experiments. ADP was applied to the internal surface of excised insideout membrane patches and depending upon the experimental protocol and the concentration it was found that ADP could either inhibit or stimulate openings of ATP-sensitive K+ channels. In the absence of inactivation, ATP-sensitive K+ channels were inhibited by ADP in a dose-dependent manner. Partially inactivated channels, on the other hand, were stimulated by low (10 to 250 M) and inhibited by high (>250 M) concentrations of ADP. ATP-sensitive K+ channels which were being inhibited by ATP (<1 mM) could be opened by the simultaneous application of ADP (50 M to 1 mM). ADP had no effect upon channels inhibited by mM concentrations of ATP. The situation was further complicated when it was found that inhibition evoked by ADP was strongly attenuated by the presence of Mg2+ ions whilst channel stimulation, whether of partially inactivated channels or channels inhibited by ATP, required the presence of Mg2+ ions. The analog of ADP, ADPS, always evoked inhibition of ATP-sensitive K+ channels which was not affected by the presence or absence of Mg2+ ions.  相似文献   

19.
Although abnormalities in Purkinje cell (PC) repolarization are important causes of cardiac arrhythmias, the detailed properties of repolarizing currents in PCs are incompletely understood. We compared transient outward K(+) current (I(to)) in single PCs from canine false tendons with midmyocardial ventricular myocytes (VMs). I(to) reactivation was biexponential, with a similar rapid-phase time constant (30 +/- 5 and 35 +/- 4 ms for VM and PC, respectively) but a large, slow component in PCs with a much greater time constant than VM (1,427 +/- 70 vs. 181 +/- 24 ms, P < 0.001). Tetraethylammonium had no effect on VM I(to) but reversibly inhibited PC I(to) (IC(50) = 2.4 +/- 0.4 mM). PC I(to) was also more sensitive to 4-aminopyridine (IC(50) = 50 +/- 7 vs. 526 +/- 49 microM in VM, P < 0.0001). H(2)O(2) slowed I(to) inactivation in PCs but did not affect VM I(to). We conclude that PC I(to) shows significant differences from VM I(to), with some features, such as tetraethylammonium sensitivity, that have been reported in neither cardiac I(to) of atrial or ventricular myocytes nor cloned K(+) channel subunits (Kv1.4, Kv4.2, or Kv4.3) known to participate in cardiac I(to).  相似文献   

20.
In some forms of cardiac hypertrophy and failure, the gain of Ca(2+)-induced Ca(2+) release [CICR; i.e., the amount of Ca(2+) released from the sarcoplasmic reticulum normalized to Ca(2+) influx through L-type Ca(2+) channels (LTCCs)] decreases despite the normal whole cell LTCC current density, ryanodine receptor number, and sarcoplasmic reticulum Ca(2+) content. This decrease in CICR gain has been proposed to arise from a change in dyad architecture or derangement of the t-tubular (TT) structure. However, the activity of surface sarcolemmal LTCCs has been reported to increase despite the unaltered whole cell LTCC current density in failing human ventricular myocytes, indicating that the "decreased CICR gain" may reflect a decrease in the TT LTCC current density in heart failure. Thus, we analyzed LTCC currents of failing ventricular myocytes of mice chronically treated with isoproterenol (Iso). Although Iso-treated mice exhibited intact t-tubules and normal LTCC subunit expression, acute occlusion of t-tubules of isolated ventricular myocytes with osmotic shock (detubulation) revealed that the TT LTCC current density was halved in Iso-treated versus control myocytes. Pharmacological analysis indicated that kinases other than PKA or Ca(2+)/calmodulin-dependent protein kinase II insufficiently activated, whereas protein phosphatase 1/2A excessively suppressed, TT LTCCs in Iso-treated versus control myocytes. These results indicate that excessive β-adrenergic stimulation causes the decrease in TT LTCC current density by altering the regulation of TT LTCCs by protein kinases and phosphatases in heart failure. This phenomenon might underlie the decreased CICR gain in heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号