首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of 99mTc-bis(aminoethanethiol)-fatty acid (99mTc-BAT-fatty acid) analogs were synthesized and evaluated as potential tracers of myocardial metabolism. The BAT-fatty acid precursors were prepared using a new synthetic route that avoids the use of strong reducing agents such as lithium aluminum hydride. Biodistribution studies of the no-carrier-added 99mTc-complexes were conducted in rats using [125I]IPPA as an internal standard. The myocardial uptake of the 99mTc-BAT-fatty acid analogs was significantly less than that of [125I]IPPA and indicates the 99mTc analogs are not suitable candidates for SPECT-based myocardial imaging studies.  相似文献   

2.
The tomoxetine analog, R-4-iodotomoxetine, binds in vitro to a single site of rat cortical membranes with high affinity (Kd = 0.03 +/- 0.01 nM, n = 4) and can be blocked by a selective serotonin reuptake site inhibitor, paroxetine. The [125I]R-4-iodotomoxetine binding at equilibrium is saturable and is temperature- and Na(+)-dependent. The number of specific [125I]R-4-iodotomoxetine binding sites (Bmax = 356 +/- 20 fmol/mg protein) is similar to that of [3H]citalopram (329 +/- 30 fmol/mg protein), a known serotonin uptake inhibitor. The binding of [125I]R-4-iodotomoxetine is selectively inhibited by several serotonin uptake blockers, and a good correlation is demonstrated between the potency of various drugs to inhibit in vitro binding of [125I]R-4-iodotomoxetine and [3H]citalopram. In addition, lesions performed with the neurotoxin p-chloroamphetamine, which destroys monoamine neurons, including serotonergic neuronal system, result in a 90% reduction of [125I]R-4-iodotomoxetine binding when compared to sham controls. These results indicate that the binding sites labeled by [125I]R-4-iodotomoxetine are associated with the neuronal serotonin uptake sites. However, the in vivo and ex vivo results do not show regional localization corresponding to the distribution of serotonin uptake sites. The nonspecific uptake may be related to this compound's high lipophilicity (octanol-buffer partition coefficient = 1100 - 1400 at pH 7). Although the in vivo properties of [125I]R-4-iodotomoxetine make it an unlikely candidate for mapping serotonin uptake sites with SPECT, the high affinity and selectivity should make it a useful tool for in vitro studies of the serotonin uptake sites.  相似文献   

3.
4.
5.
FAT/CD36 is a membrane scavenger receptor that facilitates long chain fatty acid uptake by muscle. Acute increases in membrane CD36 and fatty acid uptake have been reported in response to insulin and contraction. In this study we have explored protein ubiquitination as one potential mechanism for the regulation of CD36 level. CD36 expressed in Chinese hamster ovary (CHO) or HEK 293 cells was found to be polyubiquitinated via a process involving both lysines 48 and 63 of ubiquitin. Using CHO cells expressing the insulin receptor (CHO/hIR) and CD36, it is shown that addition of insulin (100 nm, 10 and 30 min) significantly reduced CD36 ubiquitination. In contrast, ubiquitination was strongly enhanced by fatty acids (200 microm palmitate or oleate, 2 h). Similarly, endogenous CD36 in C2C12 myotubes was ubiquitinated, and this was enhanced by oleic acid treatment, which also reduced total CD36 protein in cell lysates. Insulin reduced CD36 ubiquitination, increased CD36 protein, and inhibited the opposite effects of fatty acids on both parameters. These changes were paralleled by changes in fatty acid uptake, which could be blocked by the CD36 inhibitor sulfosuccinimidyl oleate. Mutation of the two lysine residues in the carboxyl-terminal tail of CD36 markedly attenuated ubiquitination of the protein expressed in CHO cells and was associated with increased CD36 level and enhanced oleate uptake and incorporation into triglycerides. In conclusion, fatty acids and insulin induce opposite alterations in CD36 ubiquitination, modulating CD36 level and fatty acid uptake. Altered CD36 turnover may contribute to abnormal fatty acid uptake in the insulin-resistant muscle.  相似文献   

6.
R Cooper  N Noy  D Zakim 《Biochemistry》1987,26(18):5890-5896
If the uptake of fatty acids by liver is a physical, not a biological, process, then the size and location of the intrahepatic pool of fatty acids can be predicted from uptake rates and thermodynamic data. The purpose of the experiments in this paper was to test the accuracy of this idea. Rat livers were perfused with palmitate bound to albumin, and the total amounts of palmitate removed from the perfusate were measured at 3-s intervals. The intrahepatic pools of palmitate calculated from these data were 13.8 and 23.0 nmol/g of liver at ratios of palmitate/albumin (mol/mol) (afferent side) of 2/1 and 4/1, respectively, in the steady state. The intrahepatic pools of palmitate calculated from the distributions of palmitate between membranes, H2O, albumin, and fatty acid binding protein and the measured first-order rate constants for acyl-CoA ligases in mitochondria and microsomes were 12.1 and 34.6 nmol/g for perfusate ratios of palmitate/albumin of 2/1 and 4/1, in the steady state. Intrahepatic pools of palmitate measured after establishment of a steady-state rate of uptake were 15.0 and 31.8 nmol/g for these ratios of palmitate/albumin of 2/1 and 4/1.  相似文献   

7.
Yersinia pestis was found to utilize palmitic acid as a primary carbon and energy source. No inhibition of growth by palmitic acid was observed. Comparison of palmitic acid uptake by cells pregrown either with or without palmitic acid demonstrated that fatty acid uptake was constitutive. High basal levels of two enzymes of beta-oxidation, beta-hydroxyacyl-coenzyme A dehydrogenase and thiolase, and the two enzymes of the glyoxylate shunt, isocitrate lyase and malate synthase, were found in cells grown in defined medium with glucose. Elevated levels of all four enzymes were found when cells were grown with acetate as a primary carbon and energy source, and even higher levels were observed when palmitic acid was provided as a primary carbon and energy source. High-pressure liquid chromatography was used to demonstrate that, in the presence of glucose, uniformly labeled [14C]palmitic acid was converted to intermediates of the tricarboxylic acid cycle and glyoxylate shunt. Pregrowth with palmitic acid was not required for this conversion. Strains lacking the 6- or the 47-megadalton plasmid did not take up [3H]palmitic acid but did possess levels of enzyme activity comparable to those observed in the wild-type strain.  相似文献   

8.
The biochemistry of piezophilic bacteria is unique in that piezophiles produce polyunsaturated fatty acids (PUFAs). A pertinent question is if piezophilic bacteria synthesize PUFA de novo, through dietary uptake, or both. This study was undertaken to examine the biosynthesis and cellular uptake of PUFAs by piezophilic bacteria. A moderately piezophilic (Shewanella violacea DSS12) and two hyperpiezophilic bacteria (S. benthica DB21MT-2 and Moritella yayanosii DB21MT-5) were grown under 50 MPa (megapascal) and 100 MPa, respectively, in media containing marine broth 2216 supplemented with arachidonic acid (AA, sodium salt) and/or antibiotic cerulenin. There was active uptake and cellular incorporation of AA in the hyperpiezophilic bacteria DB21MT-2 (14.7% of total fatty acids) and DB21MT-5 (1.4%), but no uptake was observed in DSS12. When cells were treated with cerulenin, all three strains incorporated AA into cell membranes (13–19%). The biosynthesis of monounsaturated fatty acids was significantly inhibited (10–37%) by the addition of cerulenin, whereas the concentrations of PUFAs increased by 2–4 times. These results suggest that piezophilic bacteria biosynthesize and/or incorporate dietary polyunsaturated fatty acids that are important for their growth and piezoadaptation. The significance of these findings is also discussed in the context of phenotypic classification of piezophiles.  相似文献   

9.
Cellular uptake and intracellular trafficking of long chain fatty acids.   总被引:14,自引:0,他引:14  
While aspects of cellular fatty acid uptake have been studied as early as 50 years ago, recent developments in this rapidly evolving field have yielded new functional insights on the individual mechanistic steps in this process. The extremely low aqueous solubility of long chain fatty acids (LCFA) together with the very high affinity of serum albumin and cytoplasmic fatty acid binding proteins for LCFA have challenged the limits of technology in resolving the individual steps of this process. To date no single mechanism alone accounts for regulation of cellular LCFA uptake. Key regulatory points in cellular uptake of LCFA include: the aqueous solubility of the LCFA; the driving force(s) for LCFA entry into the cell membrane; the relative roles of diffusional and protein mediated LCFA translocation across the plasma membrane; cytoplasmic LCFA binding protein-mediated uptake and/or intracellular diffusion; the activity of LCFA-CoA synthetase; and cytoplasmic protein mediated targeting of LCFA or LCFA-CoAs toward specific metabolic pathways. The emerging picture is that the cell has multiple, overlapping mechanisms that assure adequate uptake and directed intracellular movement of LCFA required for maintenance of physiological functions. The upcoming challenge is to take advantage of new advances in this field to elucidate the differential interactions between these pathways in intact cells and in tissues.  相似文献   

10.
Development of a (99m)Tc-fatty acid analogue is of interest, as (99m)Tc is logistically advantageous over the cyclotron-produced (11)C and (123)I. Synthesis of a 16 carbon fatty acid derivative and its radiolabeling with the novel [(99m)TcN(PNP)](2+) core is described here. Hexadecanedioic acid was conjugated to cysteine in an overall yield of 55%. This ligand could be labeled with (99m)Tc via the [(99m)TcN(PNP)](2+) core, in 80% yield, as a mixture of two isomers (syn and anti). The major isomer isolated by HPLC was used for bioevaluation studies in swiss mice and compared with radioiodinated iodophenyl pentadecanoic acid (IPPA), an established agent for myocardial metabolic imaging. (99m)Tc-labeled complex cleared faster from the non-target organs, namely, liver, lungs, and blood compared to that of [(125)I]-IPPA. However, the complex exhibited lower uptake and faster washout from the myocardium as compared to [(125)I]-IPPA.  相似文献   

11.
The dinuclear complex [Cu2(L1)2(H2tea)2] (1) as well as the linear trinuclear complexes [Cu3(L1)4(H2tea)2] (2), [Cu3(L2)4(H2tea)2] (3) and [Cu3(L1)2(H2tea)2(NO3)2] (4) where L1 = 2-thiophene carboxylato, L2 = 2-thiophene acetato and H2tea = the single deprotonated form of triethanolamine have been prepared and pharmacochemically studied. The crystal structure of 1 is also reported. In vitro antioxidant activity of free ligands and their respective copper complexes includes: a) interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical, b) the ΗΟ˙ mediated oxidation of DMSO, c) scavenging of superoxide anion radicals, d) inhibition of lipid peroxidation and e) soybean lipoxygenase inhibition. The results indicate selectivity of the complexes to different free radicals as a consequence of their physichochemical features. The majority of the complexes 1, 2, 3, 4 effectively inhibit lipid peroxidation. The trinuclear complex 3 is by far the most active with IC50 = 10 μM, within the set, followed by complexes 1 and 2. The complexes were evaluated for their efficacy as anticancer agents against different cancer and normal human cell lines. Results showed that, these compounds mediate a moderate cytotoxic response to normal and cancer cell lines tested and induce cell cycle arrest in G2/M phase of the cell cycle. Flow cytometric analysis suggested that the tested compounds can induce apoptosis.  相似文献   

12.
Chemical synthesis of mixed diesters of ethanediol with N-acyl amino acids and fatty acids is described. The synthesis is performed in three steps: (1) preparation of N-acyl amino acids using fatty acid ester of N-hydroxyphthalimide as an acylating agent; (2) partial esterification of ethanediol with N-acyl amino acid, in tetrahydrofuran in presence of thionyl chloride; (3) further esterification of the monoester of ethanediol with a fatty acid, to a mixed diester, in presence of the same reagent.  相似文献   

13.
A new mouse monoclonal antibody that recognizes α- and β-heavy chains of human atrial and ventricular myosin and β-heavy chain of human slow skeletal muscle myosin was obtained. The 125I- and 111In-labelled antibody, and its F(ab′)2 and Fab fragments localize in isoproterenol induced infarcted rat heart, with the F(ab′)2 fragment showing the highest uptake. Comparison with 99mTc-pyrophosphate uptake in infarcted dog heart, induced by selective obstruction of a coronary artery, suggest that the 111In-labelled F(ab′)2 localizes specifically in infarcted myocardium only.  相似文献   

14.
AggregatingDictyostelium cells release protons when stimulated with cAMP. To find out whether the protons are generated by acidic vesicles or in the cytosol, we permeabilized the cells and found that this did not alter the cAMP-response. Proton efflux in intact cells was inhibited by preincubation with the V-type H+ ATPase inhibitor concanamycin A and with the plasma membrane H+ ATPase blocker miconazole. Surprisingly, miconazole also inhibited efflux in permeabilized cells, indicating that this type of H+ ATPase is present on intracellular vesicles as well. Vesicular acidification was inhibited by miconazole and by concanamycin A, suggesting that the acidic vesicles contain both V-type and P-type H+ ATPases. Moreover, concanamycin A and miconazole acted in concert, both in intact cells and in vesicles. The mechanism of cAMP-induced Ca2+-fluxes involves phospholipase A2 activity. Fatty acids circumvent the plasma membrane and stimulate vesicular Ca2+-efflux. Here we show that arachidonic acid elicited H+-efflux not only from intact cells but also from acidic vesicles. The target of regulation by arachidonic acid seemed to be the vesicular Ca2+-relase channel.  相似文献   

15.
Dietary n-3 PUFAs have been shown to attenuate T-cell-mediated inflammation. To investigate whether dietary n-3 PUFAs promote activation-induced cell death (AICD) in CD4+ T-cells induced in vitro to a polarized T-helper1 (Th1) phenotype, C57BL/6 mice were fed diets containing either 5% corn oil (CO; n-6 PUFA control) or 4% fish oil (FO) plus 1% CO (n-3 PUFA) for 2 weeks. Splenic CD4+ T-cells were cultured with alpha-interleukin-4 (alphaIL-4), IL-12, and IL-2 for 2 days and then with recombinant (r) IL-12 and rIL-2 for 3 days in the presence of diet-matched homologous mouse serum (HMS) to prevent loss of cell membrane fatty acids, or with fetal bovine serum. After polarization, Th1 cells were reactivated and analyzed for interferon-gamma and IL-4 by intracellular cytokine staining and for apoptosis by Annexin V/propidium iodide. Dietary FO enhanced Th1 polarization by 49% (P = 0.0001) and AICD by 24% (P = 0.0001) only in cells cultured in the presence of HMS. FO enhancement of Th1 polarization and AICD after culture was associated with the maintenance of eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) in plasma membrane lipid rafts. In conclusion, n-3 PUFAs enhance the polarization and deletion of proinflammatory Th1 cells, possibly as a result of alterations in membrane microdomain fatty acid composition.  相似文献   

16.
Proton NMR was used as a probe to study the interaction of the Tl(+) ion with 9-18-membered macromonocyclic tri-, tetra-, and hexaamines in dimethylformamide (DMF) solution. A study of proton chemical shift of ligands as a function of Tl(+) ion to ligand mole ratio revealed that the complexation reactions occur in a stepwise manner. Formation of a 1:1 complex is followed by the addition of a second complexant molecule to form a homo-sandwich complex for triazamacrocycle ligands and a mixed ligand complex in the case of hexamethylhexacyclen (HMHCY) and 1,4,7-triazacyclononane ([9]aneN(3)). The formation constants of resulting 1:1 and 1:2 (homo and mixed ligand sandwich) complexes in DMF solution were evaluated from computer fitting of the chemical shift-mole ratio data. The mixed ligand complexes may be more stable than the parent complex in which both ligands are the same. The influence of cavity size and substitution of methyl groups on nitrogen atoms of the macrocyclic ring the stability of the resulting complexes is discussed. The geometries of the tri- and tetraazamacrocycle ligands and their Tl(+) ion complexes were optimized by an ab initio method, and the calculated binding energies of resulting complexes were compared. Both the experimental and theoretical studies revealed that, in the presence of methyl groups, the stability of triazamacrocycle complexes with Tl(+) ion was decreased.  相似文献   

17.
18.
Uptake rates across the jejunal brush border have been measured for water-soluble fatty acids and alcohols and analyzed to determine the relative roles of the unstirred water layer and the lipid cell membrane as determinants of the intestinal absorptive process. Initial studies involving measurement of time courses of electrical transients developed across the intestine exposed to poorly permeant solute molecules showed no anomalous discrimination of probe molecules of different size or charge. This finding suggests that the diffusion barrier in the intestine can be considered as an unstirred water layer. Next, uptake rates of fatty acid were found to be linear with respect to concentration of the test solute, demonstrated no competitive inhibition or contralateral stimulation, had low temperature dependency, and were insensitive to metabolic inhibition, indicating that uptake proceeds by passive diffusion. Passive permeability coefficients, *P, varied from 22 +/- 1.4 to 395 +/- 9.2 nmoles.min(-1).100 mg(-1).mm(-1) for the saturated fatty acids 2:0 through 12:0 and from 119 +/- 3.3 to 581 +/- 45.2 for the saturated alcohols 6:0 through 10:0. Vigorous stirring of the bulk buffer solution enhanced *P values in direct proportion to chain length while the presence of bile acid micelles depressed apparent permeability coefficients in proportion to fatty acid chain length. These results demonstrate that uptake of short-chain fatty acid monomers is rate limited by the lipid cell membrane but diffusion through the unstirred water layer becomes increasingly rate limiting as the chain length increases. It is also possible to conclude from these data that diffusion through the unstirred water layer becomes totally rate limiting for uptake of long-chain fatty acid monomers of physiological importance.  相似文献   

19.
In order to evaluate the effects of fatty acids on immune cell membrane structure and function, it is often necessary to maintain cells in culture. However, cell culture conditions typically reverse alterations in polyunsaturated fatty acid (PUFA) composition achieved by dietary lipid manipulation. Therefore, we hypothesized that T-cells from transgenic mice expressing the Caenorhabditis elegans n-3 desaturase (fat-1) gene would be resistant to the culture-induced loss of n-3 PUFA and, therefore, obviate the need to incorporate fatty acids or homologous serum into the medium. CD4+ T-cells were isolated from (i) control wild type (WT) mice fed a safflower oil-n-6 PUFA enriched diet (SAF) devoid of n-3 PUFA, (ii) fat-1 transgenic mice (enriched with endogenous n-3 PUFA) fed a SAF diet, or (iii) WT mice fed a fish oil (FO) based diet enriched in n-3 PUFA. T-cell phospholipids isolated from WT mice fed FO diet (enriched in n-3 PUFA) and fat-1 transgenic mice fed a SAF diet (enriched in n-6 PUFA) were both enriched in n-3 PUFA. As expected, the mol% levels of both n-3 and n-6 PUFA were decreased in cultures of CD4+ T-cells from FO-fed WT mice after 3 d in culture. In contrast, the expression of n-3 desaturase prevented the culture-induced decrease of n-3 PUFA in CD4+ T-cells from the transgenic mice. Carboxyfluorescein succinidyl ester (CFSE) -labeled CD4+ T-cells from fat-1/SAF vs. WT/SAF mice stimulated with anti-CD3 and anti-CD28 for 3 d, exhibited a reduced (P<0.05) number of cell divisions. We conclude that fat-1-containing CD4+ T-cells express a physiologically relevant, n-3 PUFA enriched, membrane fatty acid composition which is resistant to conventional cell culture-induced depletion.  相似文献   

20.
We report the synthesis and evaluation of 4-benzylpiperazine ligands (BP-CH(3), BP-F, BP-Br, BP-I, and BP-NO(2)) as potential σ(1) receptor ligands. The X-ray crystal structure of BP-Br, which crystallized with monoclinic space group P2(1)/c, has been determined. In vitro competition binding assays showed that all the five ligands exhibit low nanomolar affinity for σ(1) receptors (K(i)=0.43-0.91nM) and high subtype selectivity (σ(2) receptor: K(i)=40-61nM; K(i)σ(2)/K(i)σ(1)=52-94). [(125)I]BP-I (1-(1,3-benzodioxol-5-ylmethyl)-4-(4-iodobenzyl)piperazine) was prepared in 53±10% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via iododestannylation of the corresponding tributyltin precursor. The logD value of [(125)I]BP-I was found to be 2.98±0.17, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiolabeled substances in organs known to contain σ(1) receptors, including the brain, lung, kidney, heart, and spleen. Administration of haloperidol 5min prior to injection of [(125)I]BP-I significantly reduced the concentration of radioactivity in the above-mentioned organs. The accumulation of radiolabeled substance in the thyroid was quite low suggesting that [(125)I]BP-I is relatively stable to in vivo deiodination. These findings suggest that the binding of [(125)I]BP-I to σ(1) receptors in vivo is specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号