首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glucocorticoids are well known to stimulate apoptosis in immature thymocytes. Apoptosis in this and other cells is characterized by cell shrinkage, DNA fragmentation and activation of a class of proteases named caspases. We have utilized the flow cytometer to evaluate the coordinate regulation of cell shrinkage and DNA fragmentation in glucocorticoid-treated rat thymocytes and explore the role of caspases upstream of both changes. The results indicate that the activation of apoptosis by glucocorticoids in a cell population is an asynchronous event with only a percentage of the cells displaying apoptotic characteristics at any given time. Both cell shrinkage and chromatin degradation are tightly coupled with similar proportions of the cells displaying each characteristic. The coordinate appearance of these characteristics may suggest a similar mechanism of regulation. Incubation of thymocytes with the general caspase inhibitor Z-VAD-FMK completely blocked both cell shrinkage and DNA fragmentation in spontaneous and glucocorticoid-induced thymocyte apoptosis, implicating an early upstream role for proteases in the activation of thymocyte apoptosis.  相似文献   

2.
3.
Recently, it was reported that the offset of hemodynamic forces induces an unusual pattern of apoptosis in vascular endothelium (1). Although the apoptotic trigger covers all cells and is maintained for a longer time period, only few cells become apoptotic. So, in contrast to common apoptosis inducers, the lack of hemodynamic forces initiates only a low basal level of apoptosis, however steadily increases with time, this way preventing the complete vessel destruction upon an only transient offset of blood flow. The molecular means by which the mechanical stimulus and apoptosis are smoothly coupled have now been identified as an autocrine loop of thrombospondin-1 (TSP-1) and the alpha(v)beta(3) integrin/integrin-associated protein (IAP) complex as its receptor. Vascular EC (EC) secrete TSP-1 only in postconfluent static monolayers and not under flow. This also holds true for the IAP whereas the alpha(v)beta(3) integrin is present under static conditions, as well as under flow, assigning the IAP an essential and new switch function in the receptor complex.  相似文献   

4.
Thymocytes undergo negative and positive selection during development in the thymus. During this selection process, the majority of thymocytes are eliminated by apoptosis through signaling via TCR or die by neglect, possibly mediated through glucocorticoids. In this study, we report that thymocytes require molecular oxygen to undergo apoptosis induced by dexamethasone (DEX), a synthetic glucocorticoid, and treatment with N-acetyl-L-cysteine (NAC), a thiol antioxidant, inhibits thymocyte apoptosis in vivo as well as ex vivo. We detected elevated intracellular levels of hydrogen peroxide (H(2)O(2)) during DEX-induced apoptosis, which is reduced by NAC treatment, indicating that the elevated levels of intracellular H(2)O(2) are proapoptotic. We also show that loss of mitochondrial membrane potential, cytochrome c release, as well as caspase-3 activation induced by DEX are attenuated by NAC treatment. We identified the production site for H(2)O(2) as the ubiquinone cycle at complex III of mitochondria by using various inhibitors of the mitochondrial electron transport chain, and we show that the cell death events mediated by mitochondria are also significantly reduced when the inhibitors were used. Through inhibition of the proteasome, we also show that the production of H(2)O(2) and the cell death events mediated by mitochondria are regulated by proteosomal activities in DEX-induced thymocyte apoptosis. We conclude that in DEX-treated thymocytes, the increased production of H(2)O(2) originates from mitochondria and is proapoptotic for cell death mediated by mitochondria. We also conclude that all the apoptotic events mediated by mitochondria are regulated by proteasomes.  相似文献   

5.
Immature double-positive (DP) thymocytes mature into CD4(+)CD8(-) cells in response to coengagement of TCR with any of a variety of cell surface "coinducer" receptors, including CD2. In contrast, DP thymocytes are signaled to undergo apoptosis by coengagement of TCR with CD28 costimulatory receptors, but the molecular basis for DP thymocyte apoptosis by TCR plus CD28 coengagement is not known. In the present study, we report that TCR plus CD28 coengagement does not invariably induce DP thymocyte apoptosis but, depending on the intensity of CD28 costimulation, can induce DP thymocyte maturation. We demonstrate that distinct but interacting signal transduction pathways mediate DP thymocyte maturation signals and DP thymocyte apoptotic signals. Specifically, DP maturation signals are transduced by the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and up-regulate expression of the antiapoptotic protein Bcl-2. In contrast, the apoptotic response stimulated by CD28 costimulatory signals is mediated by ERK/MAPK-independent pathways. Importantly, when TCR-activated thymocytes are simultaneously coengaged by both CD28 and CD2 receptors, CD28 signals can inhibit ERK/MAPK-dependent Bcl-2 protein up-regulation. Thus, there is cross-talk between the signal transduction pathways that transduce apoptotic and maturation responses, enabling CD28-initiated signal transduction pathways to both stimulate DP thymocyte apoptosis and also negatively regulate maturation responses initiated by TCR plus CD2 coengagement.  相似文献   

6.
High expression of stromelysin-3 (ST-3), also known as matrix metalloproteinase-11, has been implicated in tumor progression and intense tissue remodeling. Nonetheless, details of the cell type(s) expressing ST-3 are less well defined. Here, we report that ST-3 expression was elevated in mouse thymus following thymocyte apoptosis after administration of anti-CD3 Ab. TUNEL analysis revealed that many thymocytes in the cortical region were induced to apoptotic cell death 14 h after the injection. After an additional 2-6 h, ST-3 expression in the thymus was more apparent. Co-staining analysis by anti-ST-3 and F4/80 Abs showed that most F4/80-positive macrophages were also positive for ST-3. Murine peritoneal macrophages were found to constitutively express ST-3, and exposure to apoptotic cells hardly affected ST-3 expression in the macrophages. Taken together, our results indicate that ST-3 is not involved in the execution process of thymocyte apoptosis, and the increased levels of ST-3 in the thymus may be due to the presence of macrophages responsible for clearance of apoptotic cells.  相似文献   

7.
To find whether Fas/Fas ligand (FasL) pathway is involved in T-2 toxin (T-2)-mediated thymocyte apoptosis, we used lpr/lpr (lpr) and gld/gld (gld) mice, whose Fas and FasL proteins, respectively, are functionally deficient. Based on the DNA fragmentation profile in gel electrophoresis and measurement of apoptotic cell percent by flow cytometry, the levels of thymocyte apoptosis in lpr and gld mice that had received T-2 showed that both lpr and gld mice had undergone apoptosis essentially to the same magnitude as those of corresponding wild type mice (+/+). These results strongly suggest that T-2-induced thymocyte apoptosis in vivo in mice is independent of the Fas/FasL pathway.  相似文献   

8.
9.
细胞表面糖在细胞分化及细胞周期中均有一定的变化,而且还与细胞间的识别与信息传递有关,为了解膜表面糖复合物在细胞凋亡过程中的作用,通过地塞米松诱导小鼠胸腺细胞凋亡为模型,利用对8种抗原结构相关的寡糖特异的单克隆抗体,观察凋亡过程中胸腺细胞表面岩藻糖化糖抗原结构的变化。免疫组化的分析结果表明:正常胸腺细胞表面的糖抗原主要是含有岩藻糖基的H-2和Le ̄b.而凋亡的胸腺细胞表面出现GlcNAcβ1-3Gal-,Galβ1-4GlcNAcβ1-3Gal-及双岩藻糖化抗原Le ̄Y,同时Le ̄b消失。磷脂提取结果表明在给药3h后膜的PS条带明显增加,通过对诱发细胞凋亡过程中组化分析的时相变化观察发现:凋亡细胞膜表面糖抗原的变化在给药1h(即凋亡发生前)就出现。以上结果说明凋亡过程中胸腺细胞表面岩藻糖化抗原发生了变化,且此变化可能与细胞凋亡的始发有关。  相似文献   

10.
A thymic epithelial cell line (tsTNC-1) that maintains the ability to selectively bind and internalize immature alphabetaTCR(lo)CD4(+)CD8(+) thymocytes in vitro was used in long-term coincubation experiments to determine the ultimate fate of thymocytes that remained within intracytoplasmic vacuoles of thymic nurse cells (TNCs). In an earlier report, a subset of the population released from the TNC interaction was shown to mature to the alphabetaTCR(hi)CD69(hi) stage of development, while thymocytes that bided within the TNC cytoplasm died through the process of apoptosis. Here, we show the presence of both apoptotic and nonapoptotic thymocytes within the cytoplasm of freshly isolated TNCs as well as in tsTNC-1 cells in culture. A microscopic analysis revealed total degradation of the cytoplasmic apoptotic thymocyte population that remained in tsTNC-1 cells after an 8- to 10-h incubation period. A quantitative analysis showed an increase of cytoplasmic thymocyte degradation over time to almost 80% after 9 h of incubation. However, in the presence of bafilomycin A1, which is used to inhibit acidification of lysosomal vesicles, degradation of apoptotic thymocytes never reached 10%. These data suggest that lysosomes within TNCs play a role in the degradation of apoptotic thymocytes. We examined tsTNC-1 cells before the addition of thymocytes to cultures and found lysosomes to be clustered around the nucleus in the cytoplasm of TNCs. Shortly after the internalization event, apoptotic thymocytes move to the area of the cytoplasm containing lysosomes. Using the confocal microscope, we obtained evidence that shows the degradation event to be facilitated through the fusion of lysosomes with the specialized vacuoles within TNCs containing apoptotic cells.  相似文献   

11.
T-cell receptors (TCRs) are created by a stochastic gene rearrangement process during thymocyte development, generating thymocytes bearing useful, as well as unwanted, specificities. Within the latter group, autoreactive thymocytes arise which are subsequently eliminated via a thymocyte-specific apoptotic mechanism, termed negative selection. The molecular basis of this deletion is unknown. Here, we show that TCR triggering by peptide/MHC ligands activates a caspase in double-positive (DP) CD4+ CD8+ thymocytes, resulting in their death. Inhibition of this enzymatic activity prevents antigen-induced death of DP thymocytes in fetal thymic organ culture (FTOC) from TCR transgenic mice as well as apoptosis induced by anti-CD3epsilon monoclonal antibody and corticosteroids in FTOC of normal C57BL/6 mice. Hence, a common caspase mediates immature thymocyte susceptibility to cell death.  相似文献   

12.
Immobilization stress-induced thymocyte apoptosis in rats.   总被引:3,自引:0,他引:3  
Immobilization of rats is a well known model of emotional stress. We studied apoptosis in rat thymocytes during immobilization for 2-8 hours (h). Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells increased with time of immobilization. The positive cells increased significantly after 2 h and comprised about 33% of total cells after 8 h. The apoptotic cells aggregated as scattered foci predominantly in the cortex of the thymus and diffusely distributed with time of the stress. The DNA laddering also increased with time of immobilization, which was inhibited by a glucocorticoid receptor antagonist, RU-486. These results suggest that the emotional stress evoked by immobilization induces thymocyte apoptosis through glucocorticoid overflow.  相似文献   

13.
Studies of apoptotic cell uptake by phagocytes in vitro have implicated a number of different receptors capable of mediating ingestion. However, there is currently little evidence for involvement of any of these candidate receptors in vivo. Previously, we have shown by the use of a blocking mAb against the class A scavenger receptor (SR-A) and thymic macrophages prepared from SR-A null mice, that this receptor is responsible for approximately 50% of the uptake of apoptotic thymocytes in vitro. In this study we have investigated the frequency of dying cells in the thymus of mice lacking SR-A. Our inability to demonstrate increased frequencies of nonphagocytosed Annexin V+, TUNEL+, or propidium iodide+ apoptotic thymocytes suggests there is no deficiency in apoptotic thymocyte clearance in these mice. Even when the rate of thymocyte apoptosis was increased by exposure of receptor-deficient mice to gamma irradiation, we did not detect a difference in the numbers of dying cells compared with similarly treated wild-type animals. This provides the first direct evidence of redundancy in apoptotic cell clearance mechanisms in vivo.  相似文献   

14.
Apoptosis is a fundamental homeostatic mechanism essential for the normal growth, development and maintenance of every tissue and organ. Dying cells have been defined as apoptotic by distinguishing features, including cell contraction, nuclear fragmentation, blebbing, apoptotic body formation and maintenance of intact cellular membranes to prevent massive protein release and consequent inflammation. We now show that during early apoptosis limited membrane permeabilization occurs in blebs and apoptotic bodies, which allows release of proteins that may affect the proximal microenvironment before the catastrophic loss of membrane integrity during secondary necrosis. Blebbing, apoptotic body formation and protein release during early apoptosis are dependent on ROCK and myosin ATPase activity to drive actomyosin contraction. We identified 231 proteins released from actomyosin contraction-dependent blebs and apoptotic bodies by adapted SILAC (stable isotope labeling with amino acids in cell culture) combined with mass spectrometry analysis. The most enriched proteins released were the nucleosomal histones, which have previously been identified as damage-associated molecular pattern proteins (DAMPs) that can initiate sterile inflammatory responses. These results indicate that limited membrane permeabilization occurs in blebs and apoptotic bodies before secondary necrosis, leading to acute and localized release of immunomodulatory proteins during the early phase of active apoptotic membrane blebbing. Therefore, the shift from apoptosis to secondary necrosis is more graded than a simple binary switch, with the membrane permeabilization of apoptotic bodies and consequent limited release of DAMPs contributing to the transition between these states.  相似文献   

15.
Programmed cell death or apoptosis is a crucial process for normal embryonic development and homeostasis. Apoptosis is known to be coupled to multiple signalling pathways. Identification of critical points in the regulation of apoptosis is of major interest both for the understanding of control of cell fate and for the discovery of new pharmacological targets, particularly in oncology. Indeed, defects in the execution of apoptosis are known to participate in tumour initiation and progression as well as in chemoresistance. The Bcl-2 family members constitute essential intracellular players in the apoptotic machinery. Those proteins are either pro or anti-apoptotic, they interact with each other to regulate apoptosis. Inhibiting the heterodimerisation between pro- and anti-apoptotic members is sufficient to promote apoptosis in mammalian cells. Small molecules, antagonists or peptidomimetics inhibiting this heterodimerisation, represent a therapeutic prototype targeting the apoptotic cascade. They induce cell death by activating directly the mitochondrial apoptotic pathway. Considerable evidence indicate that such Bcl-2 antagonists could be useful drugs to induce apoptosis preferentially in neoplastic cells.  相似文献   

16.
Recent evidence points to the crucial involvement of voltage-gated potassium channels (Kv) in apoptotic volume decrease and in the regulation of apoptosis in several systems. We have recently described the presence of a Kv channel, Kv1.3, in the mitochondria of lymphocytes. Expression of the channel correlated with increased sensitivity to apoptotic stimuli. Mitochondrial Kv1.3 contributes to the apoptotic cascade in T lymphocytes by interacting with pro-apoptotic Bax resulting in alteration of mitochondrial functional parameters and ultimately, in cytochrome c release. The present review summarizes the current understanding of the function of Kv channels in apoptosis in several cell types as well as the role of mitochondrial Kv1.3 in the regulation of cell death in lymphocytes.  相似文献   

17.
Thymocyte apoptosis levels are higher in C57BL/6J mice than in C3Hf/Kam mice. Low-dose irradiation increases the numbers of thymocytes undergoing apoptosis, but the strain difference persists. We mapped three loci controlling radiation-induced thymocyte apoptosis levels in F2 intercross progeny of these strains. The strongest association of a genomic region with an apoptosis level occurred in a region of chromosome 11 known to harbor a locus (or loci) important in the pathogenesis of several rodent models of autoimmune disease. Additional loci influencing radiation-induced thymocyte apoptosis were identified on chromosomes 9 and 16. The genetic polymorphisms underlying these loci may have an evolutionary role in fine-tuning the apoptotic response in T cells and may be important in the etiology of lymphoproliferative disorders and autoimmunity.  相似文献   

18.
Monosodium glutamate (MSG), the sodium salt of glutamate, is commonly used as a flavor enhancer in modern nutrition. Recent studies have shown the existence of glutamate receptors on lymphocytes, thymocytes and thymic stromal cells. In this study, we evaluated the in vitro effect of different MSG concentrations on rat thymocyte apoptosis and expression of two apoptosis-related proteins, Bcl-2 and Bax. Rat thymocytes, obtained from male Wistar rats, were exposed to increasing concentrations of MSG (ranging from 1 mM to 100 mM) for 24 h. Apoptosis was detected using the Annexin V-FITC/PI apoptosis detection kit and cells were analyzed using a flow cytometer. Expression of Bcl-2 and Bax proteins were determined with flow cytometry using respective monoclonal antibodies. Exposure to MSG resulted in a dose-dependent decrease in cell survival (as determined by trypan blue exclusion method). Annexin V-FITC/PI also confirmed that MSG increased, in a dose-dependent manner, apoptotic cell death in rat thymocyte cultures. MSG treatment induced downregulation of Bcl-2 protein, while Bax protein levels were not significantly changed. Our data showed that MSG significantly modulates thymocyte apoptosis rate in cultures. The temporal profile of Bcl-2 and Bax expression after MSG treatment suggests that downregulation of Bcl-2 protein and the resulting change of Bcl-2/Bax protein ratio may be an important event in thymocyte apoptosis triggered by MSG.  相似文献   

19.
Ionizing radiation and mitotic inhibitors are used for the treatment of lymphoma. We have studied cell cycle arrest and apoptosis of three human B-lymphocyte cell lines after X irradiation and/or nocodazole treatment. Radiation (4 and 6 Gy) caused arrest in the G(2) phase of the cell cycle as well as in G(1) in Reh cells with an intact TP53 response. Reh cells, but not U698 and Daudi cells with defects in the TP53 pathway, died by apoptosis after exposure to 4 or 6 Gy radiation (>15% apoptotic Reh cells and <5% apoptotic U698/Daudi cells 24 h postirradiation). Lower doses of radiation (0.5 and 1 Gy) caused a transient delay in the G(2) phase of the cell cycle for the three cell lines but did not induce apoptosis (<5% apoptotic cells at 24 h postirradiation). Cells of all three cell lines died by apoptosis after exposure to 1 microg/ml nocodazole, a mitotic blocker that acts by inhibiting the polymerization of tubulin (>25% apoptotic cells after 24 h). When X irradiation with 4 or 6 Gy was performed at the time of addition of nocodazole to U698 and Daudi cells, X rays protected against the apoptosis-inducing effects of the microtubule inhibitor (<5% and 15% apoptotic cells, respectively, 24 h incubation). U698 and Daudi cells apparently have some error(s) in the signaling pathway inducing apoptosis after irradiation, and our results suggest that the arrest in G(2) prevents the cells from entering mitosis and from apoptosis in the presence of microtubule inhibitors. This arrest was overcome by caffeine, which caused U698 cells to enter mitosis (after irradiation) and become apoptotic in the presence of nocodazole (26% apoptotic cells, 24 h incubation). These results may have implications for the design of clinical multimodality protocols involving ionizing radiation for the treatment of cancer.  相似文献   

20.
The aim of this study was to investigate the effects of centrally applied somatostatin-28 on morphometric characteristics of the thymus, the thymocyte subpopulations, as well as, on apoptosis and phases of cell cycle in thymocytes. For this purpose, peripubertal male rats were cannulated intracerebroventriculary and treated with repeated, nanomolar concentrations of somatostatin-28 (experimental group) or saline (control group). Animals were sacrificed and their thymuses were used for the analysis of thymocyte subpopulations, cell cycle and apoptosis by flow cytometry and for the evaluation of morphometric parameters by stereological analysis. Our results showed that somatostatin-28 caused decrease of the thymic mass and volume, as well as total thymocytes number. Stereological analysis revealed volume decrease of thymic cortex and medulla accompanied with cellularity decrease. Somatostatin in the deeper cortex decreased the number of thymocytes, per volume unit, while in outer cortex raised their number. A significant increase in the percentage of double-negative and both single-positive thymocyte subpopulations, in parallel with a diminished percentage of double-positive cells was found. The cellularity of double-positive and single-positive thymocyte subpopulations was decreased. Somatostatin-28 treatment augmented the percentage of apoptotic cells, while the percentage of the cells represented in phases of cell cycle was reduced. These results suggest that somatostatin-28 induce thymus hypotrophy as result of decreasing cortex and medulla volume and cellularity. Changes in the percentage and cellularity of thymocyte subpopulations and numerical density of thymocytes in outer and deeper cortex, indicate that somatostatin-28 evoked disturbance in transition of double-negative to double-positive thymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号