首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of detergents and free fatty acids on the K(+)-activated ATPase activity and on the steady-state phosphorylation level of pig gastric H,K-ATPase were studied. Unsaturated free fatty acids inhibited the K(+)-activated ATPase activity, due to inactivation of the enzyme (long-term effects) and to a decrease in the K(+)-sensitive dephosphorylation rate (short-term effects). The degree of inhibition depended on the reaction conditions: the protein concentration, the temperature and the ligands used. No effect was observed when saturated- or methylated unsaturated fatty acids were tested. Free fatty acids and the detergent C12E8 increased the steady-state ATP phosphorylation level, indicating the presence of vesicular structures in the H,K-ATPase preparations. At higher concentrations these compounds inactivated H,K-ATPase, which was measured as a decrease in phosphorylation capacity. By combining the data from the ATP phosphorylation level in the absence and presence of C12E8 (without inactivation) and the data from the K(+)-activated ATPase activity with and without ionophore the tightness of vesicular preparations and the orientation of H,K-ATPase was determined. A rather simple method for the isolation of H,K-ATPase is reported, which yields highly purified H,K-ATPase preparations with a ATP phosphorylation capacity of 3.9 nmol P per mg protein or 0.57 mol P per mol alpha beta protomer. This number suggests that each alpha-subunit H,K-ATPase can be phosphorylated at the same time.  相似文献   

2.
In intact tissues respiratory substrates (glucose, fatty acids) must be activated with the use of ATP before they may be oxidised and used for energy (ATP) production. This activation by product constitutes an example of a typical positive feedback. In the present paper, the influence of substrate activation on the effect of inborn enzyme deficiencies, inhibitors, lowered oxygen tension, respiratory fuel shortage and increased energy demand on respiration and ATP synthesis is studied with the aid of the dynamic computer model of oxidative phosphorylation in isolated mitochondria developed previously. Computer simulations demonstrate that, in the case where oxidative phosphorylation in the whole organism is partially inhibited, the necessity of substrate activation can have significant impact on the relationship between the activity of (particular steps of) oxidative phosphorylation (or the value of energy demand) and the respiration rate. Depending on the sensitivity of ATP usage to ATP concentration, substrate activation may either slightly enhance the effect of the decrease in the oxidative phosphorylation activity (increase in energy demand) or may lead to a non-stability and sudden collapse of the respiration rate and phosphorylation potential below (above) a certain threshold value of oxidative phosphorylation activity (energy demand). This theoretical finding suggests a possible causal relationship between the affinity of ATP usage to [ATP] and the tissue specificity of mitochondrial diseases.  相似文献   

3.
Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.  相似文献   

4.
A possible biochemical mode of action for benzimidazole anthelmintics   总被引:3,自引:0,他引:3  
Albendazole (ABZ), cambendazole (CBZ), oxibendazole (OBZ), and thiabendazole (TBZ) are potent, orally active, broad spectrum anthelmintics widely used in human and veterinary medicine. As members of the benzimidazole series, they are closely related chemically, and it is likely that they exert their anthelmintic effects in an identical fashion. We have examined the effects of these anthelmintics on the electrical resistance of planar bimolecular lipid membranes and compared the results with those obtained with a known uncoupler, 2,4-dinitrophenol (2,4-DNP). All drugs tested markedly reduced membrane resistance at concentrations lower than 0.1 microM and were better proton conductors than 2,4-DNP by at least an order of magnitude. The sequence of proton conducting efficiency was ABZ greater than OBZ greater than TBZ greater than CBZ greater than 2,4-DNP. From 1 to 40 microM, ABZ and CBZ substantially decreased P/O (phosphorous/oxygen) ratios in coupled rat liver mitochondria in a concentration-dependent fashion using beta-hydroxybutyrate as the substrate. 2,4-DNP was also shown to decrease P/O ratios, but less effectively than the benzimidazole anthelmintics. These experiments indicate that the benzimidazole anthelmintics are lipid-soluble proton conductors that are effective in artificial (phospholipid bilayer) and natural (rat liver mitochondria) membrane systems. Dissipation of the transmembrane proton gradient should result in diminished levels of cellular ATP. In vivo treatment with a therapeutically effective dose of ABZ caused a severe disturbance in the energy balance of Hymenolepis diminuta; this was evident from a distinct drop in ATP levels, and from a decline in the ATP/ADP ratios, adenylate energy charge (AEC) and available adenylate energy (AAE) values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In a complex medium with the energy source as the limiting nutrient factor and under anaerobic growth conditions, Streptococcus agalactiae fermented 75% of the glucose to lactic acid and the remainder to acetic and formic acids and ethanol. By using the adenosine triphosphate (ATP) yield constant of 10.5, the molar growth yield suggested 2 moles of ATP per mole of glucose from substrate level phosphorylation. Under similar growth conditions, pyruvate was fermented 25% to lactic acid, and the remainder was fermented to acetic and formic acids. The molar growth yield suggested 0.75 mole of ATP per mole of pyruvate from substrate level phosphorylation. Under aerobic growth conditions about 1 mole of oxygen was consumed per mole of glucose; about one-third of the glucose was converted to lactic acid and the remainder to acetic acid, acetoin, and carbon dioxide. Molar growth yields indicated 5 moles of ATP per mole of glucose. Estimates based on products of glucose degradation suggested that about one-half of the ATP was derived from substrate level phosphorylation and one-half from oxidative phosphorylation. Addition of 0.5 m 2,4-dinitrophenol reduced the growth yield to that occurring in the absence of oxygen. Aerobic pyruvate degradation resulted in 30% of the substrate becoming reduced to lactic acid and the remainder being converted to acetic acid and carbon dioxide, with small amounts of formic acid and acetoin. The molar growth yields and products found suggested that 0.70 mole of ATP per mole of pyruvate resulted from substrate level phosphorylation and 0.4 mole per mole of pyruvate resulted from oxidative phosphorylation.  相似文献   

6.
Palmitoyl-L carnitine decreases the oxidation of isocitrate in rat liver mitochondria in state 3 by 25-30%. Palmitoyl-L-carnitine acts as an additional substrate raising the rate of oxidative phosphorylation, NAD reduction and ATP/ADP ratio in mitochondria. Palmitoyl-CoA added to mitochondria oxidizing isocitrate in state 3 causes a strong inhibition of isocitrate oxidation and of oxidative phosphorylation and a considerable elevation of intramitochondrial NADH/NAD and ATP/ADP ratios. The effect of palmitoyl-CoA is dependent on its concentration and is competitive with ADP. Carnitine restores only oxidative phosphorylation, but the oxidation of isocitrate remains inhibited. Evidence is presented that the transport of isocitrate is not affected by palmitoyl-CoA is due to the inhibition of adenine nucleotide translocation. The kinetic studies of NAD-dependent isocitrate dehydrogenase in the soluble fraction of sonicated mitochondria revealed that the enzyme is very sensitive towards the inhibition by NADH and only very slightly affected by ATP (Ki for NADH and ATP are 0.017 and 3.6 mM respectively). On the basis of the kinetic data the relative contribution of NADH and ATP in the inhibition of isocitrate oxidation by fatty acids was calculated. It is concluded that the inhibition of isocitrate oxidation caused by palmitoyl-L-carnitine and palmitoyl-CoA is primarily due to the increased reduction of NAD, whereas the increase of ATP/ADP ratio is much less important.  相似文献   

7.
The objective of this study was to evaluate some of the mechanisms by which norepinephrine (NE) and insulin may influence protein degradation in mouse brown adipocytes differentiated in cultures. The effects of NE and insulin, alone or in combination, on three factors known to influence proteolysis (maintenance of cell ATP and 1-phosphatidylinositol 3-kinase (PI 3-kinase) and p70 ribosomal S6-kinase (p70 S6K) activities) were examined. It was proposed that NE affects proteolysis indirectly by decreasing cell ATP from activation of uncoupling protein-1 (UCP1)-dependent mitochondrial respiration. This was tested by comparing the effects of NE and fatty acids (which directly activate UCP1) on proteolysis in brown adipocytes, as well as in pre-adipocytes and 3T3-L1 adipocytes, which do not express UCP1. An inhibitory effect of insulin on proteolysis is observed in both pre-adipocytes and differentiated cells, whereas NE and exogenously added fatty acids inhibit proteolysis only in brown adipocytes. There is a linear relationship between reductions in cell ATP and proteolysis in response to increasing concentrations of NE or fatty acids. PI 3-kinase activity is required for proteolysis, because two selective inhibitors (wortmannin and LY294002) reduce proteolysis in both pre-adipocytes and differentiated cells. This effect is not additive to that of NE, which suggests they affect the same proteolytic pathway. In contrast to NE, insulin increases PI 3-kinase activity and phosphorylation of p70 S6K. Rapamycin, which prevented insulin-dependent increase in phosphorylation of p70 S6K, increases proteolysis in brown adipocytes and antagonizes the inhibitory effect of insulin on proteolysis, but not the inhibitory effect of NE. Thus, insulin inhibits proteolysis via rapamycin-sensitive activation of p70 S6K, whereas the effect of NE appears largely to be a function of decreasing cell ATP content.  相似文献   

8.
不同溶氧对谷氨酸棒杆菌代谢的影响   总被引:1,自引:0,他引:1  
【目的】以谷氨酸棒杆菌为研究对象,分别控制在0、30%、50%3种溶氧水平下进行发酵,分析不同溶氧水平下代谢的变化。【方法】通过检测发酵代谢物中有机酸、氨基酸的含量,以及测定代谢途径中关键酶活性及其编码基因的表达情况来考察不同溶氧水平下物质代谢发生的变化。通过检测胞内还原力和ATP的含量来分析不同溶氧水平对能量代谢产生的影响。【结果】谷氨酸棒杆菌代谢支路受溶氧的影响而发生改变,氨基酸、有机酸的产量也随之改变。特别是在低溶氧(0)情况下,细胞内氧化磷酸化减弱,导致维持生命活动所必需的ATP供应减少,因此细胞通过增强底物水平磷酸化来产生ATP以满足生命活动的需求。在此情况下,胞内NADH得到较多积累,TCA循环代谢流量减小,而转向糖酵解、乙醛酸循环等,并且这个过程伴随多种杂酸包括乳酸、缬氨酸、亮氨酸等的产生,必将影响目的产物的产量。【结论】研究结果对于进一步采取措施优化溶氧的控制策略,提高目的产物的产量具有指导意义。  相似文献   

9.
The effect of ATP/ADP-antiporter inhibitors on palmitate-induced uncoupling was studied in heart muscle mitochondria and inside-out submitochondrial particles. In both systems palmitate is found to decrease the respiration-generated membrane potential. In mitochondria, this effect is specifically abolished by carboxyatractylate (CAtr) a non-penetrating inhibitor of antiporter. In submitochondrial particles, CAtr does not abolish the palmitate-induced potential decrease. At the same time, bongkrekic acid, a penetrating inhibitor of the antiporter, suppresses the palmitate effect on the potential both in mitochondria and particles. Palmitoyl-CoA which is known to inhibit the antiporter in mitochondria as well as in particles decreases the palmitate uncoupling efficiency in both these systems. These data are in agreement with the hypothesis that the ATP/ADP-antiporter is involved in the action of free fatty acids as natural uncouplers of oxidative phosphorylation.  相似文献   

10.
Pregnancy enhanced nitric oxide production by uterine artery endothelial cells (UAEC) is the result of reprogramming of both Ca(2+) and kinase signaling pathways. Using UAEC derived from pregnant ewes (P-UAEC), as well as COS-7 cells transiently expressing ovine endothelial nitric oxide synthase (eNOS), we investigated the role of phosphorylation of five known amino acids following treatment with physiological calcium-mobilizing agent ATP and compared with the effects of PMA (also known as TPA) alone or in combination with ATP. In P-UAEC, ATP stimulated eNOS activity and phosphorylation of eNOS S617, S635, and S1179. PMA promoted eNOS phosphorylation but without activation. PMA and ATP cotreatment attenuated ATP-stimulated activity despite no increase in phospho (p)-T497 and potentiation of p-S1179. In COS-7 cells, PMA inhibition of ATP-stimulated eNOS activity was associated with p-T497 phosphorylation. Although T497D eNOS activity was reduced to 19% of wild-type eNOS with ATP and 44% with A23187, we nonetheless observed more p-S1179 with ATP than with A23187 (3.4-fold and 1.8-fold of control, respectively). Furthermore, the S1179A eNOS mutation partly attenuated ATP- but not A23187-stimulated activity, but when combined with T497D, no further reduction of eNOS activity was observed. In conclusion, although phosphorylation of eNOS is associated with activation in P-UAEC, no single or combination of phosphorylation events predict activity changes. In COS-7 cells, phosphorylation of T497 can attenuate activity but also influences S1179 phosphorylation. We conclude that in both cell types, observed changes in phosphorylation of key residues may influence eNOS activation but are not sufficient alone to describe eNOS activation.  相似文献   

11.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

12.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

13.
Lipid biosynthesis by isolated plastids from greening pea, Pisum sativum   总被引:1,自引:0,他引:1  
Isolated etioplasts from 8-day-old dark-grown pea seedlings incorporated [1-(14)C]acetate into lipid at a relatively low rate. Plastids from seedlings that had been illuminated for at least 2 hr showed an enhanced incorporation provided the plastids were illuminated during incubation with the labeled acetate. Dark incubation or the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) decreased the acetate-incorporating activity of the developing chloroplasts to the level observed with etioplasts. Light had a marked effect on the type of fatty acid into which acetate was incorporated by the developing chloroplasts. Unsaturated fatty acids (mostly oleic acid) accounted for 60-80% of the incorporated label if the plastids were illuminated, but in the dark or in the presence of DCMU the unsaturated acids accounted for only 0-15% of the label incorporated into lipid. The effect of ATP on incorporation was dependent on the maturity of the chloroplasts; mature pea chloroplasts were inhibited by ATP, whereas in developing plastids there was a slight stimulation by ATP. Inhibition of acetate incorporation into lipid by DCMU appears to be due to inhibition of noncyclic phosphorylation. Incorporation was restored by reduced 2,3,5,6-tetramethylphenylenediamine, which restored phosphorylation, but not by reduced N,N,N',N'-tetramethylphenylenediamine.  相似文献   

14.
Malate was studied for its effect on the oxidative phosphorylation rate in the rat brain mitochondria in the presence and absence of ATP, succinate being used as a substrate of the respiration. It has been found that malate in the 0.05-0.4 mM concentration range increases the oxidation phosphorylation rate. ATP inhibiting oxidative phosphorylation intensifies the malate stimulation. The malate 0.8 mM concentration removes the inhibiting action of ATP. The regulatory effects of malate and ATP are supposed to be realized at the adenine nucleotide translocator step.  相似文献   

15.
Intact A431 cells were labeled with [gamma-32P]ATP. The major phosphorylation product of the ecto-kinase activity of A431 cells had the molecular mass of 170 kd and was identified as EGF receptor by specific immunoprecipitation. This phosphorylation was not stimulated by EGF added to the reaction buffer, but replacement of MgCl2 by MnCl2 in the buffer remarkably stimulated phosphorylation. An exogenous protein substrate, alpha-casein, was also phosphorylated by intact A431 cells. The analyses for phospho-amino acids of both EGF receptor and alpha-casein revealed that phosphorylation occurred mainly at phosphotyrosine residues. Tryptic phospho-peptides of the EGF receptor of intact A431 cells labeled with [gamma-32P]ATP were fractionated by HPLC. The elution patterns were essentially the same as that of the autophosphorylated EGF receptor, indicating that the phosphorylation sites of EGF receptor labeled in vivo with [gamma-32P]ATP are located in three tyrosine residues in the carboxyl terminus. These results indicate that the carboxyl-terminal tyrosine kinase domain of a small fraction of the EGF receptor molecules of an A431 cell is exposed on the outer surface of the cells.  相似文献   

16.
The enzyme ATP citrate-lyase of the fatty acid synthesis pathway is phosphorylated in vitro and in isolated cells. However, no effect of phosphorylation on the enzyme activity has been detected. It is demonstrated that the beta-adrenergic agonist isoproterenol or insulin both promote an immobilization of ATP citrate-lyase, detected in digitonin-permeabilized adipocytes. This effect was reproduced by the cyclic AMP analog cyclic 8-bromo-AMP. The beta-adrenergic antagonist propranolol blocked, but failed to reverse, the isoproterenol-directed effect. Propranolol also failed to reverse the isoproterenol-induced increased phosphorylation of ATP citrate-lyase specifically. In response to increasing concentrations of isoproterenol, an increased extent of phosphorylation of ATP citrate-lyase was paralleled by an increased immobilization of the enzyme. It is suggested that the state of phosphorylation of ATP citrate-lyase in adipocytes controls the localization in the cell.  相似文献   

17.
(Na+ + K+)-ATPase can be phosphorylated by its substrate ATP as well as by its product inorganic phosphate. The maximal capacity for phosphorylation by either of these two substances is one mol phosphate per mol enzyme. In order to investigate whether the enzyme molecule possesses only one phosphorylation site common to ATP and Pi, or two phosphorylation sites, one for ATP and one for Pi, dual phosphorylation of the enzyme has been carried out. Under conditions, which are maximally favourable for each type of phosphorylation, successive phosphorylation by Pi and ATP leads to a maximal incorporation of only one mol phosphate per mol enzyme. The phosphorylation capacity for ATP decreases by the same amount as the Pi-phosphorylation level increases, without an effect on the apparent affinity for ATP.The results can be explained by assuming either a single common phosphorylation site for Pi and ATP, or a conformational change of the enzyme following phosphorylation by Pi, which excludes phosphorylation by ATP.  相似文献   

18.
Preservation of the oxidative phosphorylation capacity of mitochondria by addition of ATP under anaerobic conditions was analyzed by use of non-metabolizable adenine nucleotide analogs. The capacity was well preserved in the presence of ATP and did not require the hydrolysis of ATP, since ATP analogs, such as beta, gamma-methylene adenosine triphosphate (AMPPCP), alpha, beta-methylene adenosine triphosphate (AMPCPP), and adenylyl imidodiphosphate (AMPPNP), were as effective as ATP. These analogs were incorporated into mitochondria through ATP/ADP translocase to maintain the original level of total adenine nucleotides in the mitochondria. ADP apparently had the same effect as ATP, but its effect was shown to be due to ATP generated from it by adenylate kinase in mitochondria. An analog of ADP, alpha, beta-methylene adenosine diphosphate (AMPCP), which was found to be a substrate of the translocase but not of adenylate kinase, could not replace ADP or ATP. From these results, it was concluded that the oxidative phosphorylation capacity of mitochondria was maintained by ATP, but not ADP, through a process not requiring energy.  相似文献   

19.
V P Skulachev 《FEBS letters》1991,294(3):158-162
Free fatty acids, natural uncouplers of oxidative phosphorylation, are shown to differ from artificial ones in that they fail to increase conductance of phospholipid bilayers which are permeable for the protonated form of fatty acids but impermeable for their anionic form. Recent studies have revealed that uncoupling by fatty acids in mitochondria is mediated by the ATP/ADP antiporter and, in brown fat, by thermogenin which is structurally very similar to the antiporter. It is suggested that both the ATP/ADP antiporter and thermogenin facilitate translocation of the fatty anions through the mitochondrial membrane.  相似文献   

20.
A series of experiments was carried out to investigate the role of some polar amino acids in the a-subunit of the ATP synthase of Escherichia coli. Site-directed mutagenesis resulted in the amino acid substitutions Ser-199----Ala, Ser-202----Ala, Ser-206----Ala, Arg-61----Gln or Asp-44----Asn. None of these amino acid substitutions affected the ability of the cells to carry out oxidative phosphorylation. It was concluded therefore that the effect of the substitution of leucine for Ser-206 reported previously (Cain, B.D. and Simoni, R.D. (1986) J. Biol. Chem. 261, 10043-10050) was due to the presence of the leucine rather than the absence of serine. Even though cells carrying the Asp-44----Asn substitution were able to carry out oxidative phosphorylation, membranes from such cells remained proton-impermeable after removal of the F1-ATPase. It appears likely that the proton pore of the F0 of the ATP synthase of E. coli consists of four amino acids, namely Arg-219, Glu-210 and His-245 of the a-subunit and Asp-61 of the c-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号