首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mindell JA  Maduke M 《Genome biology》2001,2(2):reviews3003.1-reviews30036
Chloride-conducting ion channels of the ClC family are emerging as critical contributors to a host of biological processes. These polytopic membrane proteins form aqueous pathways through which anions are selectively allowed to pass down their concentration gradients. The ClCs are found in nearly all organisms, with members in every mammalian tissue, yet relatively little is known about their mechanism or regulation. It is clear, however, that they are fundamentally different in molecular construction and mechanism from the well-known potassium-, sodium-, and calcium-selective channels. The medical importance of ClC channels - four inherited diseases have been blamed on familial ClC dysfunction to date - highlights their diverse physiological functions and provides strong motivation for further study.  相似文献   

2.
3.
4.
The ClC chloride channels control the ionic composition of the cytoplasm and the volume of cells, and regulate electrical excitability. Recently, it has been proposed that prokaryotic ClC channels are H+-Cl- exchange transporter. Although X-ray and molecular dynamics (MD) studies of bacterial ClC channels have investigated the filter open-close and ion permeation mechanism of channels, details have remained unclear. We performed MD simulations of ClC channels involving H+, Na+, K+, or H3O+ in the intracellular region to elucidate the open-close mechanism, and to clarify the role of H+ ion an H+-Cl- exchange transporter. Our simulations revealed that H+ and Na+ caused channel opening and the passage of Cl- ions. Na+ induced a bead-like string of Cl- -Na+-Cl--Na+-Cl- ions to form and permeate through ClC channels to the intracellular side with the widening of the channel pathway.  相似文献   

5.
Yin J  Kuang Z  Mahankali U  Beck TL 《Proteins》2004,57(2):414-421
ClC chloride channels possess a homodimeric structure in which each monomer contains an independent chloride ion pathway. ClC channel gating is regulated by chloride ion concentration, pH and voltage. Based on structural and physiological evidence, it has been proposed that a glutamate residue on the extracellular end of the selectivity filter acts as a fast gate. We utilized a new search algorithm that incorporates electrostatic information to explore the ion transit pathways through wild-type and mutant bacterial ClC channels. Examination of the chloride ion permeation pathways supports the importance of the glutamate residue in gating. An external chloride binding site previously postulated in physiological experiments is located near a conserved basic residue adjacent to the gate. In addition, access pathways are found for proton migration to the gate, enabling pH control at hyperpolarized membrane potentials. A chloride ion in the selectivity filter is required for the pH-dependent gating mechanism.  相似文献   

6.
CLC proteins are found in cells from prokaryotes to mammals and perform functions in plasma membranes and intracellular vesicles. Several genetic human diseases and mouse models underscore their broad physiological functions in mammals. These functions range from the control of excitability to transepithelial transport, endocytotic trafficking and acidification of synaptic vesicles. The recent crystallization of bacterial CLC proteins gave surprising insights into CLC Cl(-)-channel permeation and gating and provides an excellent basis for structure-function studies. Surprisingly, the CLC from Escherichia coli functions as a Cl-/H+ exchanger, thus demonstrating the thin line separating transporters and channels.  相似文献   

7.
8.
Dutzler R 《FEBS letters》2004,564(3):229-233
Members of the ClC family of voltage-gated chloride channels are found from bacteria to mammals with a considerable degree of conservation in the membrane-inserted, pore-forming region. The crystal structures of the ClC channels of Escherichia coli and Salmonella typhimurium provide a structural framework for the entire family. The ClC channels are homodimeric proteins with an overall rhombus-like shape. Each ClC dimer has two pores each contained within a single subunit. The ClC subunit consists of two roughly repeated halves that span the membrane with opposite orientations. This antiparallel architecture defines a chloride selectivity filter within the 15-A neck of a hourglass-shaped pore. Three Cl(-) binding sites within the selectivity filter stabilize ions by interactions with alpha-helix dipoles and by chemical interactions with nitrogen atoms and hydroxyl groups of residues in the protein. The Cl(-) binding site nearest the extracellular solution can be occupied either by a Cl(-) ion or by a glutamate carboxyl group. Mutations of this glutamate residue in Torpedo ray ClC channels alter gating in electrophysiological assays. These findings reveal a form of gating in which the glutamate carboxyl group closes the pore by mimicking a Cl(-) ion.  相似文献   

9.
From stones to bones: the biology of ClC chloride channels   总被引:6,自引:0,他引:6  
Chloride (Cl(-)) is the most abundant extracellular anion in multicellular organisms. Passive movement of Cl(-) through membrane ion channels enables several cellular and physiological processes including transepithelial salt transport, electrical excitability, cell volume regulation and acidification of internal and external compartments. One family of proteins mediating Cl(-) permeability, the ClC channels, has emerged as important for all of these biological processes. The importance of ClC channels has in part been realized through studies of inherited human diseases and genetically engineered mice that display a wide range of phenotypes from kidney stones to petrified bones. These recent findings have demonstrated many eclectic functions of ClC channels and have placed Cl(-) channels in the physiological limelight.  相似文献   

10.
ClC chloride channels (ClCs) can be classified into two groups in terms of their cellular localizations: ClCs present in the plasma membranes and those residing in intracellular organelles. Members of the latter group, including ClC-3, ClC-4, ClC-5, ClC-6, and ClC-7, are often co-expressed in a variety of cell types in many organs. Although the localization of individual channels within cells has been investigated, the degree of overlap between the locations of different ClCs in the same cell has not been clarified. To address this question, different combinations of ClCs, engineered to encode specific epitope tags (FLAG or HA), were either transiently or stably transfected into HEK293 cells, and we then compared the intracellular localization of the expressed channel proteins by immunofluorescence microscopy. Immunofluorescence images of the alternatively labeled channels clearly showed significant co-localization between all pair-wise combinations of ClCs. In particular, ClC-3, ClC-4, and ClC-5 showed a high degree of co-localization. As a significant degree of co-localization between ClCs was observed, we used co-immunoprecipitation to evaluate oligomer formation, and found that each ClC tested could form homo-oligomers, and that any pair-wise combination of ClC-3, ClC-4, and ClC-5 could also form hetero-oligomers. Neither ClC-6 nor ClC-7 was co-precipitated with any other channel protein. These results suggest that within cells ClC-3, ClC-4, and ClC-5 may have combinatorial functions, whereas ClC-6 and ClC-7 are more likely to function as homo-oligomers.  相似文献   

11.
The role of the carboxyl terminus in ClC chloride channel function   总被引:4,自引:0,他引:4  
The human muscle chloride channel ClC-1 has a 398-amino acid carboxyl-terminal domain that resides in the cytoplasm and contains two CBS (cystathionine-beta-synthase) domains. To examine the role of this region, we studied various carboxyl-terminal truncations by heterologous expression in mammalian cells, whole-cell patch clamp recording, and confocal imaging. Channel constructs lacking parts of the distal CBS domain, CBS2, did not produce functional channels, whereas deletion of CBS1 was tolerated. ClC channels are dimeric proteins with two ion conduction pathways (protopores). In heterodimeric channels consisting of one wild type subunit and one subunit in which the carboxyl terminus was completely deleted, only the wild type protopore was functional, indicating that the carboxyl terminus supports the function of the protopore. All carboxyl-terminal-truncated mutant channels fused to yellow fluorescent protein were translated and the majority inserted into the plasma membrane as revealed by confocal microscopy. Fusion proteins of cyan fluorescent protein linked to various fragments of the carboxyl terminus formed soluble proteins that could be redistributed to the surface membrane through binding to certain truncated channel subunits. Stable binding only occurs between carboxyl-terminal fragments of a single subunit, not between carboxyl termini of different subunits and not between carboxyl-terminal and transmembrane domains. However, an interaction with transmembrane domains can modify the binding properties of particular carboxyl-terminal proteins. Our results demonstrate that the carboxyl terminus of ClC-1 is not necessary for intracellular trafficking but is critical for channel function. Carboxyl termini fold independently and modify individual protopores of the double-barreled channel.  相似文献   

12.
The fast gate of the muscle-type ClC channels (ClC-0 and ClC-1) opens in response to the change of membrane potential (V). This gating process is intimately associated with the binding of external Cl(-) to the channel pore in a way that the occupancy of Cl(-) on the binding site increases the channel's open probability (P(o)). External H(+) also enhances the fast-gate opening in these channels, prompting a hypothesis that protonation of the binding site may increase the Cl(-) binding affinity, and this is possibly the underlying mechanism for the H(+) modulation. However, Cl(-) and H(+), modulate the fast-gate P(o)-V curve in different ways. Varying the external Cl(-) concentrations ([Cl(-)](o)) shifts the P(o)-V curve in parallel along the voltage axis, whereas reducing external pH mainly increases the minimal P(o) of the curve. Furthermore, H(+) modulations at saturating and nonsaturating [Cl(-)](o) are similar. Thus, the H(+) effect on the fast gating appears not to be a consequence of an increase in the Cl(-) binding affinity. We previously found that a hyperpolarization-favored opening process is important to determine the fast-gate P(o) of ClC-0 at very negative voltages. This [Cl(-)](o)-independent mechanism attracted little attention, but it appears to be the opening process that is modulated by external H(+).  相似文献   

13.
14.
Ion-binding properties of the ClC chloride selectivity filter   总被引:1,自引:0,他引:1  
The ClC channels are members of a large protein family of chloride (Cl-) channels and secondary active Cl- transporters. Despite their diverse functions, the transmembrane architecture within the family is conserved. Here we present a crystallographic study on the ion-binding properties of the ClC selectivity filter in the close homolog from Escherichia coli (EcClC). The ClC selectivity filter contains three ion-binding sites that bridge the extra- and intracellular solutions. The sites bind Cl- ions with mM affinity. Despite their close proximity within the filter, the three sites can be occupied simultaneously. The ion-binding properties are found conserved from the bacterial transporter EcClC to the human Cl- channel ClC-1, suggesting a close functional link between ion permeation in the channels and active transport in the transporters. In resemblance to K+ channels, ions permeate the ClC channel in a single file, with mutual repulsion between the ions fostering rapid conduction.  相似文献   

15.
16.
Ligand-gated chloride channels mediate a variety of functions in excitable membranes of nerve and muscle in insects, and have a long history as targets for neurotoxic insecticides. Recent findings from our laboratory confirm that the natural product silphinenes and their semi-synthetic analogs share a mode of action with the established ligand-gated chloride channel antagonist, picrotoxinin. The silphinenes are non-selective, being roughly equipotent on insect and mammalian receptors, but also possess lethal and neurotoxic effects on a dieldrin-resistant strain of Drosophila melanogaster. These findings suggest that silphinenes act on insect GABA receptors in a way that is different from picrotoxinin, and it is possible that resistant insect populations in the field could be controlled with insecticidal compounds derived from the silphinenes. Voltage-gated chloride channels and anion transporters provide additional classes of validated targets for insecticidal/nematicidal action. Anion transporter blockers are toxic to insects via an action on the gut, and RNAi studies implicate voltage-gated chloride channels in nematode muscle as another possible target. There was no cross resistance to DIDS in a dieldrin-resistant strain of Drosophila melanogaster, and no evidence for neurotoxicity. The potent paralytic actions of anion transporter blockers against nematodes, and stomach poisoning activity against lepidopteran larvae suggests they are worthy of further investigation as commercial insecticidal/nematicidal agents.  相似文献   

17.
The ZIP family of metal transporters   总被引:52,自引:0,他引:52  
Members of the ZIP gene family, a novel metal transporter family first identified in plants, are capable of transporting a variety of cations, including cadmium, iron, manganese and zinc. Information on where in the plant each of the ZIP transporters functions and how each is controlled in response to nutrient availability may allow the manipulation of plant mineral status with an eye to (1) creating food crops with enhanced mineral content, and (2) developing crops that bioaccumulate or exclude toxic metals.  相似文献   

18.
The NRAMP family of metal-ion transporters   总被引:5,自引:0,他引:5  
The family of NRAMP metal ion transporters functions in diverse organisms from bacteria to human. NRAMP1 functions in metal transport across the phagosomal membrane of macrophages, and defective NRAMP1 causes sensitivity to several intracellular pathogens. DCT1 (NRAMP2) transport metal ions at the plasma membrane of cells of both the duodenum and in peripheral tissues, and defective DCT1 cause anemia. The driving force for the metal-ion transport is proton gradient (protonmotive force). In DCT1 the stoichiometry between metal ion and proton varied at different conditions due to a mechanistic proton slip. Though the metal ion transport by Smf1p, the yeast homolog of DCT1, is also a protonmotive force, a slippage of sodium ions was observed. The mechanism of the above phenomena could be explained by a combination between transporter and channel mechanisms.  相似文献   

19.
Primary brain tumors (gliomas) often present with peritumoral edema. Their ability to thrive in this osmotically altered environment prompted us to examine volume regulation in human glioma cells, specifically the relative contribution of Cl channels and transporters to this process. After a hyposmotic challenge, cultured astrocytes, D54-MG glioma cells, and glioma cells from human patient biopsies exhibited a regulatory volume decrease (RVD). Although astrocytes were not able to completely reestablish their original prechallenge volumes, glioma cells exhibited complete volume recovery, sometimes recovering to a volume smaller than their original volumes (VPost-RVD < Vbaseline). In glioma cells, RVD was largely inhibited by treatment with a combination of Cl channel inhibitors, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and Cd2+ (VPost-RVD > 1.4*Vbaseline). Volume regulation was also attenuated to a lesser degree by the addition of R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA), a known K+-Cl cotransporter (KCC) inhibitor. To dissect the relative contribution of channels vs. transporters in RVD, we took advantage of the comparatively high temperature dependence of transport processes vs. channel-mediated diffusion. Cooling D54-MG glioma cells to 15°C resulted in a loss of DIOA-sensitive volume regulation. Moreover, at 15°C, the channel blockers NPPB + Cd2+ completely inhibited RVD and cells behaved like perfect osmometers. The calculated osmolyte flux during RVD under these experimental conditions suggests that the relative contribution of Cl channels vs. transporters to this process is 60–70% and 30–40%, respectively. Finally, we identified several candidate proteins that may be involved in RVD, including the Cl channels ClC-2, ClC-3, ClC-5, ClC-6, and ClC-7 and the transporters KCC1 and KCC3a. voltage-gated chloride channel family; potassium-chloride cotransporters; peritumoral edema  相似文献   

20.
The ClC channel family consists of chloride channels important for various physiological functions. Two members in this family, ClC-0 and ClC-1, share approximately 50-60% amino acid identity and show similar gating behaviors. Although they both contain two subunits, the number of pores present in the homodimeric channel is controversial. The double-barrel model proposed for ClC-0 was recently challenged by a one-pore model partly based on experiments with ClC-1 exploiting cysteine mutagenesis followed by modification with methanethiosulfonate (MTS) reagents. To investigate the pore stoichiometry of ClC-0 more rigorously, we applied a similar strategy of MTS modification in an inactivation-suppressed mutant (C212S) of ClC-0. Mutation of lysine 165 to cysteine (K165C) rendered the channel nonfunctional, but modification of the introduced cysteine by 2-aminoethyl MTS (MTSEA) recovered functional channels with altered properties of gating-permeation coupling. The fast gate of the MTSEA-modified K165C homodimer responded to external Cl(-) less effectively, so the P(o)-V curve was shifted to a more depolarized potential by approximately 45 mV. The K165C-K165 heterodimer showed double-barrel-like channel activity after MTSEA modification, with the fast-gating behaviors mimicking a combination of those of the mutant and the wild-type pore, as expected for the two-pore model. Without MTSEA modification, the heterodimer showed only one pore, and was easier to inactivate than the two-pore channel. These results showed that K165 is important for both the fast and slow gating of ClC-0. Therefore, the effects of MTS reagents on channel gating need to be carefully considered when interpreting the apparent modification rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号