首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Acute experiments to record spike activity from single fibers of the lateral line nerve of the Turkestan catfish revealed electroreceptor formations which, in their functional characteristics, were similar to the ampullated electroreceptors of other freshwater fish (the so-called small pit organs). The threshold intensity of the uniform electric field was 1 µV/cm. A voltage drop on the skin of the fish was shown to be an effective stimulus for the electroreceptors. A spike response to a change in the magnetic field was found for the first time in electroreceptors of freshwater fish. The threshold level of magnetic induction for a velocity of rotation of the permanent magnet of 1 m/sec was 2.9 · 10–4 T. Temperature and mechanical sensitivity of the electroreceptors was determined. The biological significance of electroreceptors of the Turkestan catfish is discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. M. I. Kalinin Andizhan Medical Institute, Ministry of Health of the Uzbek SSR. S. M. Kirov Murmansk Marine Biological Institute, Kola Branch, Academy of Sciences of the USSR, Dal'nie Zelentsy. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 508–516, September–October, 1980.  相似文献   

2.
Summary Gymnotiform electric fish sense low-and high frequency electric signals with ampullary and tuberous electroreceptors, respectively. We employed intracellular recording and labeling methods to investigate ampullary and tuberous information processing in laminae 1–5 of the dorsal torus semicircularis of Eigenmannia. Ampullary afferents arborized extensively in laminae 1–3 and, in some cases, lamina 7. Unlike tuberous afferents to the torus, ampullary afferents had numerous varicosities along their finest-diameter branches. Neurons that were primarily ampullary were found in lamina 3. Neurons primarily excited by tuberous stimuli were found in lamina 5 and, more rarely, in lamina 4. Cells that had dendrites in lamina 1–3 and 5 could be recruited by both ampullary and tuberous stimuli. These bimodal cells were found in lamina 4. During courtship, Eigenmannia produces interruptions of its electric organ discharges. These interruptions stimulate ampullary and tuberous receptors. The integration of ampullary and tuberous information may be important in the processing of these communication signals.Abbreviations JAR jamming avoidance response - EOD electric organ discharge - S1 sinusoidal signal mimicking fish's EOD - S2 jamming signal - Df frequency difference (S2-S1) or between a neighbor's EODs and fish's own EODs - CNS central nervous system  相似文献   

3.
During recording of impulse activity from single nerve fibers of electroreceptors of the ampullae of Lorenzini of skates, we studied the responses to electromagnetic radiation (EMR) at a frequency of 37–55 GHz and an intensity of 1–100 mW/cm2.Exposure of the ampullar canal pore to EMR at an intensity of 1–5 mW/cm2 and a distance of 1–10 mm evoked a transient increase in the frequency of low-threshold receptor activity (current threshold was 0.04–0.2 µA). An increase in EMR intensity by more than 8–10 mW/cm2 produced, together with elevation of receptor activity, an inhibition due to a rise in temperature of 1–3°C in the region exposed. The phase of increase in frequency of activity was absent in high current-threshold receptors (0.3–2.0 µA) when exposed to EMR. The receptors responded to irradiation of the ampullar canal pore at a distance of 15–20 mm by an increase in discharge frequency for 20 min. Direct irradiation of the ampullae of Lorenzini induced only inhibitory responses in receptor cells regardless of their excitability.The results obtained indicate that the sensory receptors of vertebrates are sensitive to EMR. It is concluded that the excitatory effects are due to direct reception of EMR by electroreceptors, and the inhibitory effects are related to local heating of the Lorenzini ampullar pore.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 325–329, September–October, 1993.  相似文献   

4.
The effects of L-aspartic acid (L-ASP) on spontaneous and evoked activity in afferent nerve fibers were investigated by perfusing the basal membrane of sea skate electroreceptors (the ampullae of Lorenzini) with this substance. It was found that perfusion with physiological saline containing L-ASP exerted a primarily excitatory effect on afferent activity (threshold concentration: 10–7 M). When synaptic transmission was blocked by magnesium ions, activity was restored in the afferent fibers if L-ASP was added to the solution and spike activity persisted for longer; this would imply the presence of desensitizing processes in the postsynaptic receptors of the ampullae. Finding would lead to the conclusion that L-ASP and L-glutamate fulfill a set of criteria for likely neurotransmitters in the ampullae of Lorenzini.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 61–67, January–February, 1987.  相似文献   

5.
The potential difference on the receptor epithelium of the ampullae of Lorenzini and on the skin and also spike discharges of single electroreceptor nerve fibers in response to temperature stimulation of the region of the pores of the ampullae were studied in the Black Sea skateRaja clavata. Heating the skin in the region of the pore led to the appearance of a positive potential on the skin and on the epithelium of the ampulla, and to inhibition of spike activity. The time course of the change in potential reflected the course of change of temperature; the temperature coefficient was 100–150 µV/°C. Cooling the skin was accompanied by a negative deviation of potential on the skin and in the ampullary canal and by excitation of spike activity. During cooling the temperature coefficient was 30–50 µV/°C. It is concluded that spike activity of electroreceptors reflects changes in potential on the skin due to changes in temperature. The mechanism and biological significance of the phenomena discovered are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 307–314, May–June, 1981.  相似文献   

6.
The effects of kainic acid on synaptic transmission in electroreceptors were investigated in the skate using techniques of uninterrupted superfusion of the synaptic area with a solution containing this substance and then recording the spike activity of single nerve fibers of the ampullae of Lorenzini. Kainic acid at threshold concentrations of the order of 10–9 M effectively changed spontaneous and evoked activity of the receptors. Level of background activity served as an indication of the effects taking place. During blockage of synaptic transmission produced by magnesium ions the addition of kainic acid to the magnesium-saturated solution restored both spontaneous and evoked activity. It was deduced that the action of kainic acid on skate electroreceptors is of a primarily presynaptic nature.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 147–153, March–April, 1986.  相似文献   

7.
Afferent activity in thin myelinated and unmyelinated cutaneous nerve fibers was analyzed by an impulse collision method and by methods improving the signal-to-noise ratio in the record of the antidromic action potential. The following groups were distinguished among the thin myelinated and unmyelinated nerve fibers on the basis of the results of investigation of conduction velocities, thresholds of electrical excitation, and response to mechanical stimulation: A 1 (conduction velocity 30-14 m/sec) — a relatively larger number of these fibers conducts excitation in response to weak mechanical stimulation; A 2 (14–4.0 m/sec) — the receptors of these fibers are more easily excited by a strong stimulus; a group of "mixed" fibers, containing myelinated and unmyelinated nerve fibers (4–2 m/sec), conducting excitation in response to both types of mechanical stimulation; C1 (2.0–1.0 m/sec) — a fairly large number of these unmyelinated fibers conducts impulses in response to weak mechanical stimulation; C2 (1.0–0.15 m/sec) the majority of fibers of this group is connected with receptors requiring strong mechanical stimulation for their excitation.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii State University, Gor'kii. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 67–75, January–February, 1976.  相似文献   

8.
Summary In electric fish of the family Mormyridae some primary afferent fibers conduct impulses not only from electroreceptors to the brain but also from the brain to the receptors. The efferent impulses may be elicited by electrical stimulation which is within the physiological range, i.e., by stimulation which is similar in amplitude and duration to the stimulation that is caused by the fish's own electric organ discharge. Afferent and efferent impulses in the same afferent fiber were identified by: simultaneously recording from a fiber at two different points, at the receptor and at the nerve trunk (Figs. 2C-H; 3B-D); by cutting the afferent fiber between the brain and the recording site as well as between the recording site and the periphery; and by intra-axonal recording from the afferent fiber near its entry into the brain (Fig. 4). The efferent impulses result from the central integration of a corollary discharge of the electric organ motor command with excitatory and inhibitory input from several different receptors near the one from which afferent impulses originate (Fig. 4). The centrally originating impulse may be capable of modifying the effect of signals originating in the periphery.Abbreviations ELLL electrosensory lateral line lobe - EOCD electric organ corollary discharge - EOD electric organ discharge - epsp excitatory postsynaptic potential - NPLL posterior lateral line nerve  相似文献   

9.
Responses of the receptor epithelium of single electrically isolated ampullae of Lorenzini and spike responses of nerve fibers connected to them to electrical stimulation under voltage clamping conditions were studied in experiments on the Black Sea skateRaja clavata. The preparations had an input resistance of 200–800 KΩ, a transepithelial resting potential of between 0 and ?2 mV, and the usual spontaneous spike activity in their afferent fibers. Thresholds of the electroreceptors were 2–10 µV (current about 10?11 A). Within the working range of the electroreceptors (up to ±500 µV, current up to 1 nA) the current-voltage characteristic curve of the epithelium was linear without any evidence of spike or wave activity of the receptor cells. With negative currents of over 1–10 nA a regenerative spike appeared on the epithelium and was accompanied by an uncharacteristic pattern of spike discharge of the nerve fiber. It is concluded that, contrary to Bennett's hypothesis, spike or oscillatory activity bears no relationship to normal working of electroreceptors. It is postulated that "secondarily sensitive" receptor cells share a common functional organization, which is based on a chemical synapse with high electrical sensitivity.  相似文献   

10.
Baron VD  Orlov AA 《Biofizika》2005,50(1):119-126
With the use of microelectrode techniques (extracellular recordings) and the method of post-stimulus histograms, the functional characteristics of medulla oblongata neurons of sea catfish Plotosus were investigated under stimulation of electroreceptors by a homogeneous electric field of different duration, intensity, and direction. Two types of the cells possessing, accordingly, tonic or phase activity were registered among 66 neurons investigated. The mode of responses (inhibition or acceleration) of tonic neurons to the direction of the applied electric current is typical for central neurons of fresh-water catfish connected with ampullae's electroreceptors. Neurons showing a substantial response to fields of an intensity less than 1 microV/cm were registered. The reactions were most pronounced with the duration of electric stimuli in the range of 20-200 ms; however, particularly sensitive neurons showed distinct responses to stimuli of duration of 5 and even 2 ms. Thus, for the first time a high sensitivity of ampullae's electroreceptors to high-frequency stimulus was discovered, which allows one to expand the range of studying electric signals used by weakly electric fish for electrolocation and communication.  相似文献   

11.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

12.
Responses of electroreceptors (ampullae of Lorenzini) in Black Sea rays to electrical stimuli were recorded in vivo as spike activity of single nerve fibers. Depending on their functional properties the fibers could be divided into silent, those with regular activity (10–15 spikes/sec) and those with grouped activity. Electrical stimuli evoked a tonic response with a varied degree of adaptation in the nerve fibers. The threshold currents were between 10?10 and 10?11 A/mm2. The minimal latent period of the on-responses to pulses of current of maximal intensity was 15–40 msec, whereas that of the off-responses was 15–200 msec. The effect of intensity, duration, and polarity of the stimuli on the responses of the receptors and the adaptation of the electroreceptors during application of a steady current were investigated. The properties of the ampullae of Lorenzini were compared with those of other types of electroreceptors.  相似文献   

13.
The mechanisms of reception of changes in the magnetic field by electroreceptor formations were investigated in experiments on Black Sea rays in which spike activity was recorded from single nerve fibers connected with the ampullae of Lorenzini. The responses of the ampullae of Lorenzini to magnetic stimulation were shown to be due to induced electric currents creating potential gradients in the body tissues of the fish and the sea water. On the basis of differences in responses of different ampullae to magnetic stimulation, it is possible to distinguish between magnetic stimuli and other stimuli acting on the electroreceptor system. Potentiation of the receptor response to magnetic stimulation was found as the fish came closer to the "shore." The mechanisms and biological importance of reception of changes in the magnetic field by the ampullae of Lorenzini are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 10, No. 1, 75–83, January–February, 1978.  相似文献   

14.
Summary The duration of the electric organ discharge (EOD) in Gymnotus carapo is brief and independent of fish size. Spinal mechanisms involved in electrocyte synchronization were explored by recording spontaneous action potentials of single fibers from the electromotor bulbospinal tract (EBST). Using the field potential of the medullary electromotor nucleus (MEN) as a temporal reference we calculated the orthodromic conduction velocity (CV) of these fibers (range: 10.7–91 m/s).The CVs (in m/s) of fibers recorded at the same level of the spinal cord were significantly different in small and large fish; this difference disappeared when CV were expressed as percentage of body length/ms. Plotting these values against conduction distance (also in %) showed that low CV fibers predominate in the rostral cord while only fast fibers are found at distal levels. Moreover, antidromic stimulation of the distal cord was only effective on high CV fibers. The orthodromic CVs in the distal portion of the recorded fibers were calculated by collision experiments; no significant differences were found between proximal and distal portions.The spatial distribution of CV values within the EBST is proposed to play the main role in synchronizing the electromotoneurons' activity along the spinal cord.Abbreviations EOD electric organ discharge - EO electric organ - EBST electromotor bulbospinal tract - MEN medullary electromotor nucleus - CV conduction velocity - EMN electromotoneuron  相似文献   

15.
The effects of quisqualic acid (QA), N-methyl-D-aspartate (NMDA), and a number of NMDA and non-NMDA receptor antagonists on background and induced activity in afferent nerve fibers were investigated in skates by means of bath application to the basal membrane of electroreceptors (ampullae of Lorenzini). Perfusion with physiological saline containing QA or NMDA (minimum concentrations required: 10–8 and 10–5 M respectively) was found to exert an excitatory effect on afferent activity. Aminoadipate and aminophosphonobutyrate had no effect on synaptic transmission, which was blocked by aminophosphonovalerate, however. Raising magnesium ion concentration (of 30 mM) led to blockade of NMDA-induced response without changing that produced by QA. Aminophosphonovalerate blocked NMDA response and partially reduced the effects of L-aspartic acid. Glutamyl glycine produced blockade of synaptic transmission. The findings obtained would point to synaptic sensitivity to the action of amino acid agonists (QA and NMDA) in the ampullae of Lorenzini.Neurocybernetics Research Institute, Rostov-on-Don. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 160–167, March–April, 1989.  相似文献   

16.
Postsynaptic potentials of motoneurons of the masseter and digastric muscles evoked by stimulation of the infraorbital nerve with a strength of between 1 and 10 thresholds were investigated in cats anesthetized with a mixture of chloralose and pentobarbital. Depending on their ability to be activated by low-threshold afferents of this nerve, motoneurons of the masseter were divided into two groups. Stimuli with a strength of 1.2–2.5 times above threshold for the most excitable fibers of the infraorbital nerve evoked short-latency EPSPs in the motoneurons of the first group; a further increase in stimulus strength (3–9 thresholds) led to the appearance of IPSPs with latent periods of 2.8–3.5 msec. Motoneurons of the second group responded to stimulation of the infraorbital nerve with a strength of 3–9 thresholds by IPSPs whose latent periods varied from 6 to 8 msec. Stimuli below 3 thresholds in strength evoked no responses in these motoneurons. Stimulation of the infraorbital nerve with pulses of between 1 and 2 thresholds in strength evoked EPSPs in digastric motoneurons, but an increase in the strength of stimulation led to action potential generation. The presence of many excitatory and inhibitory inputs formed by afferent fibers of different types evidently provides a basis for functional diversity of jaw-opening and jaw-closing reflexes.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 596–603, November–December, 1980.  相似文献   

17.
In cats anesthetized with chloralose nociceptive heating of the skin of the foot to 44–60°C led to a two- to fourfold increase in amplitude of primary cortical responses to direct stimulation of neurons of the spinocervical tract receiving information from the heated area of skin, but did not affect primary responses evoked by stimulation of axons of these neurons in the dorsolateral funiculus, and actually inhibited the response to stimulation of the nerve innervating the heated area of skin. Inhibition was accompanied by depolarization of central terminal of low-threshold fibers of this nerve: During heating the amplitude of the antidromic discharges evoked in the nerve by stimulation of its presynaptic endings in the spinal cord was increased two- to threefold. After abolition of presynaptic depolarization with picrotoxin (0.2–0.7 mg/kg, intravenously) or as a result of asphyxia, nociceptive heating acquired the ability to facilitate primary responses arising as a result of stimulation of the nerve also. The amplitude of the responses was increased under these circumstances by 3–20 times. It is concluded that acute nociceptive stimulation causes such powerful presynaptic inhibition of impulse transmission from low-threshold fibers of the cutaneous nerve that it virtually abolishes the facilitating effect of nociceptive impulses on sensory neurons of the spinal cord. It is suggested that it is this inhibitory mechanism which prevents the development of hyperalgesia during acute nociceptive stimulation.Institute of General Pathology and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 621–627, November–December, 1981.  相似文献   

18.
Summary The response characteristics of saccular nerve fibers in European grassfrogs (Rana temporaria) subjected to dorso-ventral, 10–200 Hz sinusoidal vibrations were studied.Only 4 fibers out of a total of 129 did not respond to the vibrations.70 fibers had an irregular spontaneous activity of 2–48 spikes/s. These fibers were very vibration-sensitive. The synchronization thresholds at 10–20 Hz varied from below 0.005 to 0.02 cm/s2.In contrast to earlier results, all these fibers had low-pass characteristics (with respect to acceleration) and responded maximally at 10 and 20 Hz.55 fibers had spontaneous activities from 0–2 spikes/s. These fibers were less sensitive than the fibers with higher spontaneous activity. The spike-rate thresholds varied from about 0.04 to above 1.28 cm/s2, giving a considerable range fractionation. Most of these fibers also had low-pass characteristics with respect to acceleration, but 8 fibers showed band-pass characteristics with maximal synchronizations and spike-rates occurring at 40–80 Hz.At high acceleration levels, most spikes fell within 5–10 degrees of the stimulus cycle. The phase-locking of the saccular fibers is therefore very acute at low frequencies.The phase angles preferred by the fibers at 10 Hz were bimodally distributed with the two peaks about 180° apart. This finding probably reflects the morphological observation that the saccular macula contains two oppositely oriented hair-cell populations. The results also indicate that the actual motion of the otolith relative to the macula is complex.No behavioral role of a vibration receptor has been demonstrated in the grassfrog. A use in predator avoidance is likely, and it is possible that the sacculus is used for detection of water surface-waves. The vibration sense could therefore be of importance in the detection and localization of conspecifics in the breeding ponds.  相似文献   

19.
Analysis of afferent activity in unmyelinated fibers of a cutaneous nerve was carried out by the colliding impulses method in cats. The effect of antidromic excitation of the nerve and mechanical stimulation of the receptors on subsequent orthodromic activity during stretching of the skin was investigated. Both these factors were shown to reduce subsequent orthodromic activity evoked by testing stimulation. The reduction in activity was greatest 10–15 sec after stimulation. The duration of the inhibitory effect was greater after mechanical than after antidromic stimulation. Combined mechanical stimulation and antidromic excitation resulted in a greater decrease of afferent activity and an increase in the time of its recovery. An increase in the frequency of antidromic excitation potentiated the inhibitory effect of preliminary stimulation on orthodromic activity in C fibers.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii Gor'kii State University. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 307–312, May–June, 1977.  相似文献   

20.
The parameters of conduction via afferent nerve fibers were studied in mice with streptozotocin-induced and genetically determineddiabetes mellitus (9- to 12-week-old animals; streptozotocin was injected into 5-week-old mice). Recording of spinal cord dorsal surface potentials evoked by stimulation of the sciatic nerve showed that within the studied time interval the mice of the two diabetic groups were characterized by a moderate decrease (by 7.9% and 5.8%, on average) in the conduction velocity for afferent volleys (measured according to the delay of the peak of positivity of a volley) and by a considerable increase in the duration of the positive phase of these volleys (by 36% and 33%, respectively, as compared with the values in intact animals). Therefore, the population of relatively slow group A afferent fibers becomes noticeably larger in the sciatic nerve of diabetic mice even at early stages of the pathology, but at the same time a considerable amount of the fastest-conducting (about 45–60 m/sec) fibers is still preserved. The changes in mice with diabetes of different etiology were very similar, in spite of different hyperglycemia levels in these groups. Possible factors determining diabetes-induced modifications of the conduction velocity via the nerve fibers are discussed.Neirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 173–178, July–October, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号