共查询到20条相似文献,搜索用时 0 毫秒
1.
The Arabidopsis EDS1 and PAD4 genes encode lipase-like proteins that function in resistance (R) gene-mediated and basal plant disease resistance. Phenotypic analysis of eds1 and pad4 null mutants shows that EDS1 and PAD4 are required for resistance conditioned by the same spectrum of R genes but fulfil distinct roles within the defence pathway. EDS1 is essential for elaboration of the plant hypersensitive response, whereas EDS1 and PAD4 are both required for accumulation of the plant defence-potentiating molecule, salicylic acid. EDS1 is necessary for pathogen-induced PAD4 mRNA accumulation, whereas mutations in PAD4 or depletion of salicylic acid only partially compromise EDS1 expression. Yeast two-hybrid analysis reveals that EDS1 can dimerize and interact with PAD4. However, EDS1 dimerization is mediated by different domains to those involved in EDS1-PAD4 association. Co-immunoprecipitation experiments show that EDS1 and PAD4 proteins interact in healthy and pathogen-challenged plant cells. We propose two functions for EDS1. The first is required early in plant defence, independently of PAD4. The second recruits PAD4 in the amplification of defences, possibly by direct EDS1-PAD4 association. 相似文献
2.
Gitanjali Tandon Sarika Jaiswal M.A. Iquebal Sunil Kumar Sukhdeep Kaur Anil Rai 《Journal of biomolecular structure & dynamics》2013,31(10):2180-2191
Biotic stress is a major cause of heavy loss in grape productivity. In order to develop biotic stress-resistant grape varieties, the key defense genes along with its pathway have to be deciphered. In angiosperm plants, lipase-like protein phytoalexin deficient 4 (PAD4) is well known to be essential for systemic resistance against biotic stress. PAD4 functions together with its interacting partner protein enhanced disease susceptibility 1 (EDS1) to promote salicylic acid (SA)-dependent and SA-independent defense pathway. Existence and structure of key protein of systemic resistance EDS1 and PAD4 are not known in grapes. Before SA pathway studies are taken in grape, molecular evidence of EDS1: PAD4 complex is to be established. To establish this, EDS1 protein sequence was retrieved from NCBI and homologous PAD4 protein was generated using Arabidopsis thaliana as template and conserved domains were confirmed. In this study, computational methods were used to model EDS1 and PAD4 and simulated the interactions of EDS1 and PAD4. Since no structural details of the proteins were available, homology modeling was employed to construct three-dimensional structures. Further, molecular dynamic simulations were performed to study the dynamic behavior of the EDS1 and PAD4. The modeled proteins were validated and subjected to molecular docking analysis. Molecular evidence of stable complex of EDS1:PAD4 in grape supporting SA defense pathway in response to biotic stress is reported in this study. If SA defense pathway genes are explored, then markers of genes involved can play pivotal role in grape variety development especially against biotic stress leading to higher productivity. 相似文献
3.
SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus 总被引:1,自引:0,他引:1
Zhu S Jeong RD Venugopal SC Lapchyk L Navarre D Kachroo A Kachroo P 《PLoS pathogens》2011,7(11):e1002318
EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance. 相似文献
4.
C Kim R Meskauskiene S Zhang KP Lee M Lakshmanan Ashok K Blajecka C Herrfurth I Feussner K Apel 《The Plant cell》2012,24(7):3026-3039
Enhanced levels of singlet oxygen ((1)O(2)) in chloroplasts trigger programmed cell death. The impact of (1)O(2) production in chloroplasts was monitored first in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that accumulates (1)O(2) upon a dark/light shift. The onset of (1)O(2) production is rapidly followed by a loss of chloroplast integrity that precedes the rupture of the central vacuole and the final collapse of the cell. Inactivation of the two plastid proteins EXECUTER (EX1) and EX2 in the flu mutant abrogates these responses, indicating that disintegration of chloroplasts is due to EX-dependent signaling rather than (1)O(2) directly. In flu seedlings, (1)O(2)-mediated cell death signaling operates as a default pathway that results in seedlings committing suicide. By contrast, EX-dependent signaling in the wild type induces the formation of microlesions without decreasing the viability of seedlings. (1)O(2)-mediated and EX-dependent loss of plastid integrity and cell death in these plants occurs only in cells containing fully developed chloroplasts. Our findings support an as yet unreported signaling role of (1)O(2) in the wild type exposed to mild light stress that invokes photoinhibition of photosystem II without causing photooxidative damage of the plant. 相似文献
5.
Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase 总被引:11,自引:0,他引:11
下载免费PDF全文

ENHANCED DISEASE RESISTANCE 1 (EDR1) encodes a CTR1-like kinase and was previously reported to function as a negative regulator of disease resistance and ethylene-induced senescence. Here, we report that the edr1 mutant displays enhanced stress responses and spontaneous necrotic lesions under drought conditions in the absence of pathogen, suggesting that EDR1 is also involved in stress response signaling and cell death regulation. Double mutant analysis revealed that these drought-induced phenotypes require salicylic acid but not ethylene signaling pathways. In addition, the edr1-mediated ethylene-induced senescence phenotype was suppressed by mutations in EIN2, but not by mutations in SID2, PAD4, EDS1, or NPR1, suggesting that EDR1 functions at a point of cross talk between ethylene and salicylic acid signaling that impinges on senescence and cell death. Two edr1-associated phenotypes, drought-induced growth inhibition and ethylene-induced senescence, were suppressed by mutations in ORE9, implicating ubiquitin-mediated protein degradation in the regulation of these phenotypes. However, the ore9 mutation did not suppress edr1-mediated enhanced disease resistance to powdery mildew or spontaneous lesions, indicating that these phenotypes are controlled by separate signaling pathways. To investigate the function of the EDR1 kinase domain, we expressed the C-terminal third of EDR1 in wild-type Columbia and edr1 backgrounds under the control of a dexamethasone-inducible promoter. Overexpression of the EDR1 kinase domain in an edr1 background had no obvious effect on edr1-associated phenotypes. However, overexpression of the EDR1 kinase domain in a wild-type Columbia background caused dominant negative phenotypes, including enhanced disease resistance to powdery mildew and enhanced ethylene-induced senescence; thus, the overexpressed EDR1 kinase domain alone does not exert EDR1 function, but rather negatively affects the function of native EDR1 protein. 相似文献
6.
Plastids are major regulators of light signaling in Arabidopsis 总被引:1,自引:0,他引:1
7.
Joseph D. Clarke Nicole Aarts Bart J. Feys Xinnian Dong & Jane E. Parker 《The Plant journal : for cell and molecular biology》2001,26(4):409-420
The systemic acquired resistance (SAR) response in Arabidopsis is characterized by the accumulation of salicylic acid (SA), expression of the pathogenesis-related (PR) genes, and enhanced resistance to virulent bacterial and oomycete pathogens. The cpr (constitutive expressor of PR genes) mutants express all three SAR phenotypes. In addition, cpr5 and cpr6 induce expression of PDF1.2, a defense-related gene associated with activation of the jasmonate/ethylene-mediated resistance pathways. cpr5 also forms spontaneous lesions. In contrast, the eds1 (enhanced disease susceptibility) mutation abolishes race-specific resistance conferred by a major subclass of resistance (R) gene products in response to avirulent pathogens. eds1 plants also exhibit increased susceptibility to virulent pathogens. Epistasis experiments were designed to explore the relationship between the cpr- and EDS1-mediated resistance pathways. We found that a null eds1 mutation suppresses the disease resistance phenotypes of both cpr1 and cpr6. In contrast, eds1 only partially suppresses resistance in cpr5, leading us to conclude that cpr5 expresses both EDS1-dependent and EDS1-independent components of plant disease resistance. Although eds1 does not prevent lesion formation on cpr5 leaves, it alters their appearance and reduces their spread. This phenotypic difference is associated with increased pathogen colonization of cpr5 eds1 plants compared to cpr5. The data allow us to place EDS1 as a necessary downstream component of cpr1- and cpr6-mediated responses, but suggest a more complex relationship between EDS1 and cpr5 in plant defense. 相似文献
8.
9.
10.
The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling 总被引:1,自引:0,他引:1
下载免费PDF全文

Hutchison CE Li J Argueso C Gonzalez M Lee E Lewis MW Maxwell BB Perdue TD Schaller GE Alonso JM Ecker JR Kieber JJ 《The Plant cell》2006,18(11):3073-3087
Arabidopsis thaliana histidine phosphotransfer proteins (AHPs) are similar to bacterial and yeast histidine phosphotransfer proteins (HPts), which act in multistep phosphorelay signaling pathways. A phosphorelay pathway is the current model for cytokinin signaling. To assess the role of AHPs in cytokinin signaling, we isolated T-DNA insertions in the five AHP genes that are predicted to encode functional HPts and constructed multiple insertion mutants, including an ahp1,2,3,4,5 quintuple mutant. Single ahp mutants were indistinguishable from wild-type seedlings in cytokinin response assays. However, various higher-order mutants displayed reduced sensitivity to cytokinin in diverse cytokinin assays, indicating both a positive role for AHPs in cytokinin signaling and functional overlap among the AHPs. In contrast with the other four AHPs, AHP4 may play a negative role in some cytokinin responses. The quintuple ahp mutant showed various abnormalities in growth and development, including reduced fertility, increased seed size, reduced vascular development, and a shortened primary root. These data indicate that most of the AHPs are redundant, positive regulators of cytokinin signaling and affect multiple aspects of plant development. 相似文献
11.
Plant cells undergo programmed cell death in response to invading pathogens. This cell death limits the spread of the infection and triggers whole plant antimicrobial and immune responses. The signaling network connecting molecular recognition of pathogens to these responses is a prime target for manipulation in genetic engineering strategies designed to improve crop plant disease resistance. Moreover, as alterations to metabolism can be misinterpreted as pathogen infection, successful plant metabolic engineering will ultimately depend on controlling these signaling pathways to avoid inadvertent activation of cell death. Programmed cell death resulting from infection of Arabidopsis thaliana with Pseudomonas syringae bacterial pathogens was chosen as a model system. Signaling circuitry hypotheses in this model system were tested by construction of a differential-equations-based mathematical model. Model-based simulations of time evolution of signaling components matched experimental measurements of programmed cell death and associated signaling components obtained in a companion study. Simulation of systems-level consequences of mutations used in laboratory studies led to two major improvements in understanding of signaling circuitry: (1) Simulations supported experimental evidence that a negative feedback loop in salicylic acid biosynthesis postulated by others does not exist. (2) Simulations showed that a second negative regulatory circuit for which there was strong experimental support did not affect one of two pathways leading to programmed cell death. Simulations also generated testable predictions to guide future experiments. Additional testable hypotheses were generated by results of individually varying each model parameter over 2 orders of magnitude that predicted biologically important changes to system dynamics. These predictions will be tested in future laboratory studies designed to further elucidate the signaling network control structure. 相似文献
12.
13.
Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis 总被引:9,自引:0,他引:9
下载免费PDF全文

Pavet V Olmos E Kiddle G Mowla S Kumar S Antoniw J Alvarez ME Foyer CH 《Plant physiology》2005,139(3):1291-1303
Programmed cell death, developmental senescence, and responses to pathogens are linked through complex genetic controls that are influenced by redox regulation. Here we show that the Arabidopsis (Arabidopsis thaliana) low vitamin C mutants, vtc1 and vtc2, which have between 10% and 25% of wild-type ascorbic acid, exhibit microlesions, express pathogenesis-related (PR) proteins, and have enhanced basal resistance against infections caused by Pseudomonas syringae. The mutants have a delayed senescence phenotype with smaller leaf cells than the wild type at maturity. The vtc leaves have more glutathione than the wild type, with higher ratios of reduced glutathione to glutathione disulfide. Expression of green fluorescence protein (GFP) fused to the nonexpressor of PR protein 1 (GFP-NPR1) was used to detect the presence of NPR1 in the nuclei of transformed plants. Fluorescence was observed in the nuclei of 6- to 8-week-old GFP-NPR1 vtc1 plants, but not in the nuclei of transformed GFP-NPR1 wild-type plants at any developmental stage. The absence of senescence-associated gene 12 (SAG12) mRNA at the time when constitutive cell death and basal resistance were detected confirms that elaboration of innate immune responses in vtc plants does not result from activation of early senescence. Moreover, H2O2-sensitive genes are not induced at the time of systemic acquired resistance execution. These results demonstrate that ascorbic acid abundance modifies the threshold for activation of plant innate defense responses via redox mechanisms that are independent of the natural senescence program. 相似文献
14.
15.
Fei Gao Ru Dai Sharon M. Pike Wenping Qiu Walter Gassmann 《Plant molecular biology》2014,86(4-5):381-393
The molecular interactions between grapevine and the obligate biotrophic fungus Erysiphe necator are not understood in depth. One reason for this is the recalcitrance of grapevine to genetic modifications. Using defense-related Arabidopsis mutants that are susceptible to pathogens, we were able to analyze key components in grapevine defense responses. We have examined the functions of defense genes associated with the salicylic acid (SA) pathway, including ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), EDS1-LIKE 2 (EDL2), EDL5 and PHYTOALEXIN DEFICIENT 4 (PAD4) of two grapevine species, Vitis vinifera cv. Cabernet Sauvignon, which is susceptible to E. necator, and V. aestivalis cv. Norton, which is resistant. Both VaEDS1 and VvEDS1 were previously found to functionally complement the Arabidopsis eds1-1 mutant. Here we show that the promoters of both VaEDS1 and VvEDS1 were induced by SA, indicating that the heightened defense of Norton is related to its high SA level. Other than Va/VvEDS1, only VaEDL2 complemented Arabidopsis eds1-1, whereas Va/VvPAD4 did not complement Arabidopsis pad4-1. Bimolecular fluorescence complementation results indicated that Vitis EDS1 and EDL2 proteins interact with Vitis PAD4 and AtPAD4, suggesting that Vitis EDS1/EDL2 forms a complex with PAD4 to confer resistance, as is known from Arabidopsis. However, Vitis EDL5 and PAD4 did not interact with Arabidopsis EDS1 or PAD4, correlating with their inability to function in Arabidopsis. Together, our study suggests a more complicated EDS1/PAD4 module in grapevine and provides insight into molecular mechanisms that determine disease resistance levels in Vitis species native to the North American continent. 相似文献
16.
Lee SM Choi SE Lee JH Lee JJ Jung IR Lee SJ Lee KW Kang Y 《Molecular and cellular biochemistry》2011,354(1-2):207-217
Fatty acid-induced cytotoxicity is believed to recapitulate lipotoxicity seen in obese type-2 diabetes, and, thus, contribute to beta cell loss in the disease. These studies were initiated to determine whether the Toll-like receptor (TLR) signaling pathway was involved in palmitate-induced beta cell death. Treatment of INS-1 beta cells with palmitate enhanced interaction between TLR and myeloid differentiation factor88 (MyD88). Concomitant with TLR/MyD88 interaction, the level of phospho-C-Jun N-terminal kinase (phospho-JNK) showed an increase; however, the level of inhibitory factor kappa B alpha (IκBα) showed a decrease. Gene knockdown of TLR4 prevented palmitate-induced INS-1 cell death, while knockdown of TLR2 did not. In addition, gene knockdown of TLR4 prevented palmitate-induced increase of phospho-JNK and decrease of IκBα. JNK inhibitor SP60125 significantly protected against palmitate-induced INS-1 cell death, while IκB kinase (IKK) inhibitor acetylsalicylate did not. These data suggest involvement of JNK activation through the TLR4 signaling pathway in palmitate-induced INS-1 beta cell death. 相似文献
17.
18.
The arabidopsis TIR-NB-LRR gene RAC1 confers resistance to Albugo candida (white rust) and is dependent on EDS1 but not PAD4 总被引:2,自引:0,他引:2
Borhan MH Holub EB Beynon JL Rozwadowski K Rimmer SR 《Molecular plant-microbe interactions : MPMI》2004,17(7):711-719
Resistance to Albugo candida isolate Acem1 is conferred by a dominant gene, RAC1, in accession Ksk-1 of Arabidopsis thaliana. This gene was isolated by positional cloning and is a member of the Drosophila toll and mammalian interleukin-1 receptor (TIR) nucleotide-binding site leucine-rich repeat (NB-LRR) class of plant resistance genes. Strong identity of the TIR and NB domains was observed between the predicted proteins encoded by the Ksk-1 allele and the allele from an Acem1-susceptible accession Columbia (Col) (99 and 98%, respectively). However, major differences between the two predicted proteins occur within the LRR domain and mainly are confined to the beta-strand/beta-turn structure of the LRR. Both proteins contain 14 imperfect repeats. RAC1-mediated resistance was analyzed further using mutations in defense regulation, including: pad4-1, eds1-1, and NahG, in the presence of the RAC1 allele from Ksk-1. White rust resistance was completely abolished by eds1-1 but was not affected by either pad4-1 or NahG. 相似文献
19.