首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accumulation of d-alanine and the accumulation of glycine in Escherichia coli are related and appear to be separate from the transport of l-alanine. The analysis of four d-cycloserine-resistant mutants provides additional support for this conclusion. The first-step mutant from E. coli K-12 that is resistant to d-cycloserine was characterized by the loss of the high-affinity line segment of the d-alanine-glycine transport system in the Lineweaver-Burk plot. This mutation, which is linked to the met(1) locus, also resulted in the loss of the ability to transport d-cycloserine. The second-step mutation that is located 0.5 min from the first-step mutation resulted in the loss of the low-affinity line segment for the d-alanine-glycine transport system. The transport of l-alanine was decreased only 20 to 30% in each of these mutants. A multistep mutant from E. coli W that is 80-fold resistant to d-cycloserine lost >90% of the transport activity for d-alanine and glycine, whereas 75% of the transport activity for l-alanine was retained. E. coli W could utilize either d- or l-alanine as a carbon source, whereas the multistep mutant could only utilize l-alanine. Thus, a functioning transport system for d-alanine and glycine is required for both d-cycloserine action and growth on d-alanine.  相似文献   

2.
Two amination-deficient mutants of Hydrogenomonas eutropha, characterized by pH-dependent linear growth on non-amino acid substrates, were investigated to determine the exact nature of the mutation. Glutamate dehydrogenase, the only aminating enzyme found in wild-type cells, was present at similar levels in mutant cells. Phenylalanine and aspartate, which allowed normal growth of the mutants, could transaminate 2-oxoglutarate to glutamate, whereas alanine, which does not support normal growth, could not transfer its amino nitrogen to form glutamate. In H. eutropha, l-alanine is apparently synthesized by beta-decarboxylation of aspartate. Studies with NH(4) (+) ions as the sole nitrogen source demonstrated that growth rates of the mutant strains were dependent on both extracellular pH and NH(4) (+) ion concentration. Comparison of these results revealed that the growth rate of mutant cultures was proportional to the concentration of extracellular NH(3). Wild-type cultures were not dependent on extracellular NH(3) since exponential growth rates did not vary with pH or NH(4) (+) ion concentration. The results suggest that the mutant strains lack an NH(4) (+) ion transport system and consequently are dependent on NH(3) diffusion which does not support optimal amination rates. The significance of the findings for the amino acid metabolism of H. eutropha is discussed.  相似文献   

3.
l-Alanine initiates the germination of spores of Bacillus subtilis by entering two metabolic pathways. The products of one pathway, which is inhibited by d-alanine or by elevated temperature, can also be derived from a combination of fructose, glucose, and K(+). The present study demonstrated that the products of the other pathway can be derived from l-asparagine or l-glutamine or, to a lesser extent, from several other amino acids. Hence, the combination of l-asparagine (or l-glutamine), fructose, glucose, and K(+) can initiate spore germination in the absence of l-alanine. Spores preincubated in a combination of asparagine and fructose do not lose refractility, optical density, or heat resistance, and do not take up methylene blue stain. The spores do, however, undergo some reaction which prepares them for a more rapid response to the later addition of glucose and K(+). This preincubation reaction has an optimal temperature of about 44 C.  相似文献   

4.
Whole cells of Bacillus subtilis transported d-alanine and l-alanine by two different systems. The high-affinity system (K(m) of 1 muM and V(max) of 0.6 to 0.8 nmol/min per mg of protein) was specific for the two stereoisomers of alanine. The low-affinity system (K(m) of 10 muM for l-alanine and 20 muM for d-alanine and glycine) had a V(max) of 5 to 12 nmol/min per mg of protein. This system transported glycine, d-cycloserine, and d-serine, in addition to d- and l-alanine. Azide inhibited the uptake of these amino acids and caused the efflux of d-alanine from preloaded cells. These data suggest that transport of these amino acids is energized by the electron transport chain.  相似文献   

5.
A bacterial strain of Pseudomonas aeruginosa AE-1-3, isolated from soil was used to remove NH4+ and NO3- simultaneously in an anaerobic environment containing 0.1% NH4NO3 and 3% glucose in the medium. After preliminary screening, eight isolates were obtained, which were evaluated for their potential to decompose NH4+ and NO3-. Each experimental investigation was carried out for 15 days under controlled laboratory conditions by varying the concentrations of glucose (0-3%). The bacterial strain, AE-1-3 showed 100% removal of both NH4+ and NO3-. The effect of metal ions in combinations of Cu2+, Zn2+, Sn2+ were also studied to ascertain the performance. The results revealed that NO3- could be removed completely in 9 days at 3 microM concentrations of the three metal ions, while 33% of NH4+ remained in 0.1% NH4NO3 medium with 0.5% glucose in the absence of these three ions.  相似文献   

6.
We constructed the high-expression system of the alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli BL 21 (DE3) to characterize the enzymological and structural properties of the gene product, Alr. The Alr was expressed in the soluble fractions of the cell extract of the E. coli clone and showed alanine racemase activity. The purified Alr was a dimer with a molecular mass of 78 kDa. The Alr required pyridoxal 5'-phosphate (PLP) as a coenzyme and contained 2 mol of PLP per mol of the enzyme. The holoenzyme showed maximum absorption at 420 nm, while the reduced form of the enzyme showed it at 310 nm. The Alr was specific for alanine, and the optimum pH was observed at about nine. The Alr was relatively thermostable, and its half-life time at 60 degrees C was estimated to be 26 min. The K(m) and V(max) values were determined as follows: l-alanine to d-alanine, K(m) (l-alanine) 5.01 mM and V(max) 306 U/mg; d-alanine to l-alanine, K(m) (d-alanine) 5.24 mM and V(max) 345 U/mg. The K(eq) value was calculated to be 1.07 and showed good agreement with the theoretical value for the racemization reaction. The high substrate specificity of the Alr from C. glutamicum ATCC 13032 is expected to be a biocatalyst for d-alanine production from the l-counter part.  相似文献   

7.
Two "ACE" mutants of Bacillus subtilis which require acetate for growth on glucose minimal medium have been isolated. They do not grow with acetoin, 2,3-butanediol, fatty acids, isoleucine, lipoic acid, malic acid, pyruvic acid, succinic acid, thiamine, or valine, but respond somewhat to glutamate or citrate. The mutants lack the activity of the pyruvate dehydrogenase complex; they excrete pyruvate and later acetoin. They grow in nutrient sporulation medium (NSMP) to one-half the normal turbidity and do not sporulate subsequently. When acetate is added to NSMP (at the optimal concentration of 0.07 m), the ACE mutants grow to the normal turbidity and then sporulate normally. Growth but not sporulation is restored in NSMP upon addition of 2,3-butanediol, citrate, glucose, glutamate, glycerol, or ribose, but not upon addition of acetoin, malate, oxaloacetate, pyruvate, and several other compounds. After growth in NSMP has stopped, the mutants incorporate uracil only at a very low rate, which can be increased by the addition of acetate, citrate, or glutamate. Furthermore, the metabolism of acetoin is prevented after growth has stopped but can be restored by the addition of acetate. All these results can be explained by a lack of reduced nicotinamide adenine dinucleotide (NADH) resulting from the deficiency in acetylcoenzyme A. In fact, after growth of the ACE mutants had stopped, the NADH concentration was at the borderline of measurability, whereas it increased significantly upon addition of glucose. The growing standard strain contains, at the same bacterial turbidity, at least 20 times more NADH (230 pmole/optical density unit at 600 nm) than the nongrowing ACE mutants. The isolated spores, obtained after growth in NSMP plus acetate, can be initiated to germinate in the presence of either l-alanine or the combination of l-asparagine, fructose, glucose, and potassium; addition of acetate is not required and has no effect.  相似文献   

8.
The effect of NH4+ ions on (Na+,K+)-ATPase hydrolytic activity was examined in a gill microsomal fraction from M. olfersii. In the absence of NH4+ ions, K+ ions stimulated ATP hydrolysis, exhibiting cooperative kinetics (nH=0.8), to a maximal specific activity of V=556.1+/-22.2 nmol.min(-1).mg(-1) with K(0.5)=2.4+/-0.1 mmol.L(-1). No further stimulation by K+ ions was observed in the presence of 50 mmol.L(-1) NH4+ ions. ATP hydrolysis was also stimulated by NH4+ ions obeying Michaelian kinetics to a maximal specific activity of V=744.8+/-22.3 nmol.min(-1).mg(-1) and KM=8.4+/-0.2 mmol.L(-1). In the presence of 10 mmol.L(-1) K+ ions, ATP hydrolysis was synergistically stimulated by NH4+ ions to V=689.8+/-13.8 nmol.min(-1).mg(-1) and K(0.5)=6.6+/-0.1 mmol.L(-1), suggesting that NH4+ ions bind to different sites than K+ ions. PNPP hydrolysis was also stimulated cooperatively by K+ or NH4+ ions to maximal values of V= 235.5+/-11.8 nmol.min(-1).mg(-1) and V=234.8+/-7.0 nmol.min(-1).mg(-1), respectively. In contrast to ATP hydrolysis, K(+)-phosphatase activity was not synergistically stimulated by NH4+ and K+ ions. These data suggest that at high NH4+ ion concentrations, the (Na+, K+)-ATPase exposes a new site; the subsequent binding of NH4+ ions stimulates ATP hydrolysis to rates higher than those for K+ ions alone. This is the first demonstration that (Na+, K+)-ATPase activity in a freshwater shrimp gill is modulated by ammonium ions, independently of K+ ions, an effect that may constitute a fine-tuning mechanism of physiological relevance to osmoregulatory and excretory processes in palaemonid shrimps.  相似文献   

9.
Initiation of bacterial spore germination   总被引:5,自引:5,他引:0  
To investigate the problem of initiation in bacterial spore germination, we isolated, from extracts of dormant spores of Bacillus cereus strain T and B. licheniformis, a protein that initiated spore germination when added to a suspension of heat-activated spores. The optimal conditions for initiatory activity of this protein (the initiator) were 30 C in 0.01 to 0.04 m NaCl and 0.01 m tris(hydroxymethyl)aminomethane (pH 8.5). The initiator was inhibited by phosphate but required two co-factors, l-alanine (1/7 of K(m) for l-alanine-inhibited germination) and nicotinamide adenine dinucleotide (1.25 x 10(-4)m). In the crude extract, the initiator activity was increased 3.5-fold by heating the extract at 65 C for 10 min, but the partially purified initiator preparation was completely heat-sensitive (65 C for 5 min). Heat stability could be conferred on the purified initiator by adding 10(-3)m dipicolinic acid. A fractionation of this protein that excluded l-alanine dehydrogenase and adenosine deaminase from the initiator activity was developed. The molecular weight of the initiator was estimated as 7 x 10(4). The kinetics of germination in the presence of initiator were examined at various concentrations of l-alanine and nicotinamide adenine dinucleotide.  相似文献   

10.
The renal medullary thick ascending limb (MTAL) actively reabsorbs ammonium ions. To examine the effects of NH4+ transport on intracellular pH (pHi) and the mechanisms of apical membrane NH4+ transport, MTALs from rats were isolated and perfused in vitro with 25 mM HCO3(-)-buffered solutions (pH 7.4). pHi was monitored using the fluorescent dye BCECF. In the absence of NH4+, the mean pHi was 7.16. Luminal addition of 20 mM NH4+ caused a rapid intracellular acidification (dpHi/dt = 11.1 U/min) and reduced the steady state pHi to 6.67 (delta pHi = 0.5 U), indicating that apical NH4+ entry was more rapid than entry of NH3. Luminal furosemide (10(-4) M) reduced the initial rate of cell acidification by 70% and the fall in steady state pHi by 35%. The residual acidification observed with furosemide was inhibited by luminal barium (12 mM), indicating that apical NH4+ entry occurred via both furosemide (Na(+)-NH4(+)-2Cl- cotransport) and barium- sensitive pathways. The role of these pathways in NH4+ absorption was assessed under symmetric ammonium conditions. With 4 mM NH4+ in perfusate and bath, mean steady state pHi was 6.61 and net ammonium absorption was 12 pmol/min/mm. Addition of furosemide to the lumen abolished net ammonium absorption and caused pHi to increase abruptly (dpHi/dt = 0.8 U/min) to 7.0. Increasing luminal [K+] from 4 to 25 mM caused a similar, rapid cell alkalinization. The pronounced cell alkalinization observed with furosemide or increasing [K+] was not observed in the absence of NH4+. In symmetric 4 mM NH4+ solutions, addition of barium to the lumen caused a slow intracellular alkalinization and reduced net ammonium absorption only by 14%. Conclusions: (a) ammonium transport is a critical determinant of pHi in the MTAL, with NH4+ absorption markedly acidifying the cells and maneuvers that inhibit apical NH4+ uptake (furosemide or elevation of luminal [K+]) causing intracellular alkalinization; (b) most or all of transcellular ammonium absorption is mediated by apical membrane Na(+)- NH4(+)-2Cl- cotransport; (c) NH4+ also permeates a barium-sensitive apical membrane transport pathway (presumably apical membrane K+ channels) but this pathway does not contribute significantly to ammonium absorption under physiologic (symmetric ammonium) conditions.  相似文献   

11.
The specific activities of l-alanine:d-alanine racemase, d-alanine:d-alanine ligase, and the l-alanine, d-glutamic acid, meso-diaminopimelic acid, and d-alanyl-d-alanine adding enzymes were followed during growth of Escherichia coli. The specific activities were nearly independent of the growth phase. d-Alanine:d-alanine ligase was inhibited by d-alanyl-d-alanine, d-cycloserine, glycine, and glycyl-glycine. l-Alanine:d-alanine racemase was found to be sensitive to d-cycloserine, glycine, and glycyl-glycine. The l-alanine adding enzyme was inhibited by glycine and glycyl-glycine.  相似文献   

12.
The energetics of ammonium ion transport by Escherichia coli have been studied using [14C]methylammonium as a substrate. Rapid assays for uptake allowed kinetic parameters (CH3NH3+ Km = 36 microM; Vmax = 4 nmol X s-1 X mg-1 to be determined in the absence of CH3NH3+ metabolism. Cells cultured in media containing 1 mM NH4+ failed to express CH3NH3+ transport activity. Methylammonium accumulated at levels which were 100-fold higher than those of the medium. This accumulation was dependent upon the addition of glucose or pyruvate. The entry of CH3NH3+ supported by glucose oxidation in an F1F0-ATPase-deficient mutant was blocked by uncoupler. Transport by wild-type cells under similar conditions was significantly inhibited by arsenate. Thus, CH3NH3+ uptake requires both ATP and an electrochemical H+ gradient. This transport activity was lost upon exposure of E. coli to osmotic shock, but could be recovered by incubation of shocked cells with boiled shock fluid or with glucose plus K+ in the presence of chloramphenicol. Similar reconstitution was observed in K+-depleted parental strains, but not in a mutant defective in K+ transport, demonstrating a requirement for internal K+. However, external K+ proved to be a noncompetitive inhibitor (Ki = 1 mM) of CH3NH3+ uptake by K+ -replete bacteria. External Na+ had no effect on transport. The addition of NH4+ or CH3NH3+ induced a rapid exodus of intracellular 86Rb+, an analog which was able to substitute for K+. The molar ratio of CH3NH3+ uptake to Rb+ exit was 1.12 +/- 0.11. These findings support a mechanism for CH3NH3+ (NH4+) accumulation which requires K+ antiport (exchange) and is driven by the electrochemical K+ gradient.  相似文献   

13.
1. The cytoplasmic membrane ionic current of cells of Rhodobacter capsulatus, washed to lower the endogenous K+ concentration, had a non-linear dependence on the membrane potential measured during photosynthetic illumination. Treatment of the cells with venturicidin, an inhibitor of the H(+)-ATP synthase, increased the membrane potential and decreased the membrane ionic current at values of membrane potential below a threshold. 2. The addition of K+ or Rb+, but not of Na+, led to an increase in the membrane ionic current and a decrease in the membrane potential in either the presence or absence of venturicidin. Approximately 0.4 mM K+ or 2.0 mM Rb+ led to a half-maximal response. At saturating concentrations of K+ and Rb+, the membrane ionic currents were similar. The membrane ionic currents due to K+ and Rb+ were not additive. The K(+)-dependent and Rb(+)-dependent ionic currents had a non-linear relationship with membrane potential: the alkali cations only increased the ionic current when the membrane potential lay above a threshold value. The presence of 1 mM Cs+ did not lead to an increase in the membrane ionic current but it had the effect of inhibiting the membrane ionic current due to either K+ or Rb+. 3. Photosynthetic illumination in the presence of either K+ or Rb+, and weak acids such as acetate, led to a decrease in light-scattering by the cells. This was attributed to the uptake of potassium or rubidium acetate and a corresponding increase in osmotic strength in the cytoplasm. 4. The addition of NH4+ also led to an increase in membrane ionic current and to a decrease in membrane potential (half-maximal at 2.0 mM NH4+). The relationship between the NH4(+)-dependent ionic currents and the membrane potential was similar to that for K+. The NH4(+)-dependent and K(+)-dependent ionic current were not additive. However, illumination in the presence of NH4+ and acetate did not lead to significant light-scattering changes. The NH4(+)-dependent membrane ionic current was inhibited by 1 mM Cs+ but not by 50 microM methylamine. 5. It is proposed that the K(+)-dependent membrane ionic current is catalysed by a low-affinity K(+)-transport system such as that described in Rb. capsulatus [Jasper, P. (1978) J. Bacteriol. 133, 1314-1322]. The possibility is considered that, as well as Rb+, this transport system can also operate with NH4+. However, in our experimental conditions NH4+ uptake is followed by NH3 efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Dialyzed membranes of Escherichia coli prepared by an ethylenediaminetetraacetic acid-lysozyme method catalyze the oxidation of both l-alanine and d-alanine. The specific activities for the oxidations of both d-alanine and l-alanine are increased fivefold when the cells are grown in the presence of either l-alanine or dl-alanine, but are increased only slightly when grown in the presence of d-alanine. In the dl-alanine-induced system, the specific activities for the oxidations of some other d-amino acids are also raised. dl-alanine also induces two other alanine catabolizing enzymes, alanine dehydrogenase and alanine-glutamate aminotransferase which are found in the "soluble" fraction of lysozyme-treated cells. The oxidations of both l-alanine and d-alanine were associated with the membranes of induced cells. After the membranes were disintegrated by sonic treatment, both l-alanine and d-alanine oxidation catalysts sedimented in a sucrose density gradient together with d-lactate and l-lactate dehydrogenases, apparently as a single multienzyme complex.  相似文献   

15.
The inhibitory effects of anthranilic acid esters (methyl anthranilate and N-methyl anthranilate) on the l-alanine-induced initiation of spore germination was examined in Bacillus subtilis 168. Methyl anthranilate irreversibly inhibited alanine initiation by a competitive mechanism. In its presence, the inhibition could be reversed only by the combined addition of d-glucose, d-fructose, and K(+). Both l-alanine dehydrogenase and l-glutamate-pyruvate transaminase, enzymes which catalyze the first reaction in l-alanine metabolism, were competitively inhibited by methyl anthranilate. The K(i) values for germination initiation (0.053 mM) and of l-glutamate-pyruvate transaminase (0.068 mM) were similar, whereas that for l-alanine dehydrogenase (0.4 mM) was six to seven times higher. Since a mutant lacking l-alanine dehydrogenase activity germinated normally in l-alanine alone, it is speculated that the major pathway of l-alanine metabolism during initiation may be via transmination reaction.  相似文献   

16.
Pyridoxineless mutants of Escherichia coli are lysed in a few hours when starved for pyridoxine in a glucose minimal medium containing glycine at 10 mM. The lysis is prevented equally well by l-alanine and by d-alanine when either is present at 0.1 mM. The lysis is potentiated by 0.5 mM l-methionine. The peculiar susceptibility of E. coli B to glycine-mediated lysis during starvation for pyridoxine suggests that the starvation reduces the availability of some normal antagonist of glycine, presumably alanine.  相似文献   

17.
The effect of an inorganic additive on the methane production from NH(4+)-rich organic sludge during anaerobic digestion was investigated using different kinds of inorganic adsorbent zeolites (mordenite, clinoptilolite, zeolite 3A, zeolite 4A), clay mineral (vermiculite), and manganese oxides (hollandite, birnessite). The additions of inorganic materials resulted in significant NH4+ removals from the natural organic sludge ([NH4+]=1, 150 mg N/l), except for the H-type zeolite 3A and birnessite. However, an enhanced methane production was only achieved using natural mordenite. Natural mordenite also enhanced the methane production from the sludge with a markedly high NH4+ concentration (4500 mg N/l) during anaerobic digestion. Chemical analyses of the sludge after the digestion showed considerable increases in the Ca2+ and Mg2+ concentrations in the presence of natural mordenite, but not with synthetic zeolite 3A. The effect of Ca2+ or Mg2+ addition on the methane production was studied using Na(+)-exchanges mordenite and Ca2+ or Mg(2+)-enriched sludge. The simultaneous addition of Ca2+ ions and Na(+)-exchanged mordenite enhanced the methane production; the amount of produced methane was about three times greater than that using only the Na(+)-exchanged mordenite. In addition, comparing the methane production by the addition of natural mordenite or Ca2+ ions, the methane production with natural mordenite was about 1.7 times higher than that with only Ca2+ ions. The addition of 5% and 10% natural mordenite were suitable condition for obtaining a high methane production. These results indicated that the Ca2+ ions, which are released from natural mordenite by a Ca2+/NH4+ exchange, enhanced the methane production of the organic waste at a high NH4+ concentration. Natural mordenite has a synergistic effect on the Ca2+ supply as well on the NH4+ removal during anaerobic digestion, which is effective for the mitigation of NH4+ inhibition against methane production.  相似文献   

18.
The accumulation of d-alanine, l-alanine, glycine, and d-cycloserine in Escherichia coli was found to be mediated by at least two transport systems. The systems for d-alanine and glycine are related, and are separate from that involved in the accumulation of l-alanine. d-Cycloserine appears to be primarily transported by the d-alanine-glycine system. The accumulation of d-alanine, glycine, and d-cycloserine was characterized by two line segments in the Lineweaver-Burk analysis, whereas the accumulation of l-alanine was characterized by a single line segment. d-Cycloserine was an effective inhibitor of glycine and d-alanine accumulation, and l-cycloserine was an effective inhibitor of l-alanine transport. The systems were further differentiated by effects of azide, enhancement under various growth conditions, and additional inhibitor studies. Since the primary access of d-cycloserine in E. coli is via the d-alanine-glycine system, glycine might be expected to be a better antagonist of d-cycloserine inhibition than l-alanine. Glycine and d-alanine at 10(-5)m antagonized the effect of d-cycloserine in E. coli, whereas this concentration of l-alanine had no effect.  相似文献   

19.
To better comprehend the mechanisms of ionic regulation, we investigate the modulation by Na+, K+, NH4(+) and ATP of the (Na+, K+)-ATPase in a microsomal fraction from Callinectes ornatus gills. ATP hydrolysis obeyed Michaelis-Menten kinetics with KM=0.61+/-0.03 mmol L(-1) and maximal rate of V=116.3+/-5.4 U mg(-1). Stimulation by Na+ (V=110.6+/-6.1 U mg(-1); K0.5=6.3+/-0.2 mmol L(-1)), Mg2+ (V=111.0+/-4.7 U mg(-1); K0.5=0.53+/-0.03 mmol L(-1)), NH4(+) (V=173.3+/-6.9 U mg(-1); K0.5=5.4+/-0.2 mmol L(-1)) and K+ (V=116.0+/-4.9 U mg(-1); K0.5=1.5+/-0.1 mmol L(-1)) followed a single saturation curve, although revealing site-site interactions. In the absence of NH4(+), ouabain (K(I)=74.5+/-1.2 micromol L(-1)) and orthovanadate inhibited ATPase activity by up to 87%; the inhibition patterns suggest the presence of F0F1 and K+-ATPases but not Na+-, V- or Ca2+-ATPase as contaminants. (Na+, K+)-ATPase activity was synergistically modulated by K+ and NH4(+). At 10 mmol L(-1) K+, increasing NH4(+) concentrations stimulated maximum activity to V=185.9+/-7.4 U mg(-1). However, at saturating NH4(+) (50 mmol L(-1)), increasing K+ concentrations did not stimulate activity further. Our findings provide evidence that the C. ornatus gill (Na+, K+)-ATPase may be particularly well suited for extremely efficient active NH4(+) excretion. At elevated NH4(+) concentrations, the enzyme is fully active, regardless of hemolymph K+ concentration, and K+ cannot displace NH4(+) from its exclusive binding sites. Further, the binding of NH4(+) to its specific sites induces an increase in enzyme apparent affinity for K+, which may contribute to maintaining K+ transport, assuring that exposure to elevated ammonia concentrations does not lead to a decrease in intracellular potassium levels. This is the first report of modulation by ammonium ions of C. ornatus gill (Na+, K+)-ATPase, and should further our understanding of NH4(+) excretion in benthic crabs.  相似文献   

20.
A fructokinase (EC 2.7.1.4) was obtained from pea (Pisum sativum L.) seeds. This enzyme, termed fructokinase (fraction IV), was specific for fructose as substrate and had little activity with glucose or mannose. Excess fructose inhibited the enzyme at the optimum pH (8.2) but not at pH 6.6. MgATP was inhibitory at pH 6.6. The apparent Michaelis-Menten constants at pH 8.2 were 0.057 mm for fructose and 0.10 mm for MgATP. Mg(2+) ions were essential for activity; Mn(2+) could partially replace Mg(2+). Fructokinase (fraction IV) had a requirement for K(+) ions which could be substantially replaced by Rb(+) or NH(4) (+) but not by Na(+). The enzyme was inhibited by MgADP. The possible significance of fructokinase (fraction IV) in plant carbohydrate metabolism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号