共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of chicken liver fructose-1,6-bisphosphatase with oxidized glutathione (GSSG) leads to an increase in activity. This activation is markedly enhanced if treatment is performed in the presence of AMP or Mn2+. The effects of AMP and Mn2+ appear to be synergistic. The maximal activation is over 13-fold and is accompanied by the disappearance of 4 sulfhydryl groups per molecule of enzyme. Both fructose 1,6-bisphosphate and fructose 2,6-bisphosphate can largely prevent this activation. Activation can be reversed by dithiothreitol or cysteine. It appears that GSSG activates this enzyme by thiol/disulfide exchanges with the enzyme's specific sulfhydryl groups. 相似文献
2.
The local environment of the essential sulfhydryl groups in chicken liver fructose-1,6-bisphosphatase has been investigated by ESR techniques using a series of iodoacetamide spin labels, varying in chain length between the iodoacetate and nitroxide free radical group. The ESR spectrum of spin-labeled chicken liver fructose-1,6-bisphosphatase showed that the sites of labeling were highly immunobilized when the enzyme was chemically modified by spin label iodoacetate, suggesting that the sulfhydryl groups of the protein are in a small, confined environment. From the change in the ESR spectra of these nitroxides as a function of chain length, we conclude that the sulfhydryl group is located in a cleft approx. 10.5A in depth. 相似文献
3.
F Marcus 《Biochemistry》1976,15(16):3505-3509
Modification of pig kidney fructose-1,6-bisphosphatase with 2,3-butanedione in borate buffer (pH 7.8) leads to the loss of the activation of the enzyme by monovalent cations, as well as to the loss of allosteric adenosine 5'-monophosphate (AMP) inhibition. In agreement with the results obtained for the butanedione modification of arginyl residues in other enzymes, the effects of modification can be reversed upon removal of excess butanedione and borate. Significant protection to the loss of K+ activation was afforded by the presence of the substrate fructose 1,6-bisphosphate, whereas AMP preferentially protected against the loss of AMP inhibition. The combination of both fructose 1,6-bisphosphate and AMP fully protected against the changes in enzyme properties on butanedione treatment. Under the latter conditions, one arginyl residue per mole of enzyme subunit was modified, whereas three arginyl residues were modified by butanedione under conditions leading to the loss of both potassium activation and AMP inhibition. Thus, the modification of two arginyl residues per subunit would appear to be responsible for the change in enzyme properties. The present results, as well as those of a previous report on the subject (Marcus, F. (1975), Biochemistry 14, 3916-3921) support the conclusion that one arginyl residue per subunit is essential for monovalent cation activation, and another arginyl residue is essential for AMP inhibition. A likely role of the latter residue could be its involvement in the binding of the phosphate group of AMP. 相似文献
4.
P F Han G Y Han H C McBay J Johnson 《Biochemical and biophysical research communications》1978,85(2):747-755
A number of agents were tested for their ability to enhance the p-hydroxylation of aniline using isolated hepatocytes as a model system. Although the observed stimulation or inhibition was not concentration dependent, various substrates for the hepatic mixed-function oxygenase (MFO) system (p-nitroanisole, 7-ethoxycoumarin, biphenyl, N,N′-dimethylaminoazobenzene, and benzphetamine) stimulated the hydroxylation at a concentration of 0.5 mm. This effect was not seen with all substrates. In general, aniline hydroxylation was not affected by the other agents tested (steroids, metabolic inhibitors and MFO inhibitors). However, enhancement was noticed with testosterone and progesterone at the lowest concentration (0.05 mm), with 2,6-dichloro-4-nitrophenol and salicylamide at 0.05 mm and 0.5 mm and with 7,8-benzoflavone at 5.0 mm. 相似文献
5.
No evidence to date suggests the possibility of subunit exchange between tetramers of mammalian fructose-1,6-bisphosphatase. An engineered fructose-1,6-bisphosphatase, with subunits of altered electrostatic charge, exhibits spontaneous subunit exchange with wild-type enzyme in the absence of ligands. The exchange process reaches equilibrium in approximately 5 h at 4 degrees C, as monitored by non-denaturing gel electrophoresis and anion exchange chromatography. Active site ligands, such as fructose 6-phosphate, abolish subunit exchange at the level of the monomer, but permit dimer-dimer exchanges. AMP, alone or in the presence of active site ligands, abolishes all exchange processes. Exchange phenomena may play a role in the kinetic mechanism of allosteric regulation of fructose-1,6-bisphosphatase. 相似文献
6.
7.
J Zalitis 《Biochemical and biophysical research communications》1976,70(2):323-330
Digestion of native sheep liver fructose-1,6-bisphosphatase by subtilisin resulted in a parallel decrease in activity and sensitivity to AMP inhibition at neutral pH and an increase in specific activity at alkaline pH. During the course of digestion the 35,500 subunit was progressively replaced by two peptides of approximately 29,000 and 6,000 molecular weight, respectively.A comparison of native and digested fructosebisphosphatase showed no significant changes in molecular weight or tryptophan content; however, their catalytic and regulatory properties were markedly different. 相似文献
8.
《The International journal of biochemistry》1991,23(10):991-995
- 1.1. Purified ostrich (Struthio camelus) liver fructose-1,6-bisphosphatase exhibited an absolute requirement for Mg2+.
- 2.2. The enzyme catalyzed the hydrolysis of fructose-1,6-bisphosphate, sedoheptulose-l,7-bisphosphate and ribulose-l,5-bisphosphate.
- 3.3. S0.5 for substrate was 1.4 μM.
- 4.4. AMP was a potent non-competitive inhibitor with respect to substrate (Ki of 25 μM).
- 5.5. Fructose-2,6-bisphosphate was a potent competitive inhibitor of the enzyme (Ki of 4.8 μM).
9.
10.
Visinoni S Fam BC Blair A Rantzau C Lamont BJ Bouwman R Watt MJ Proietto J Favaloro JM Andrikopoulos S 《American journal of physiology. Endocrinology and metabolism》2008,295(5):E1132-E1141
Increased endogenous glucose production (EGP) predominantly from the liver is a characteristic feature of type 2 diabetes, which positively correlates with fasting hyperglycemia. Gluconeogenesis is the biochemical pathway shown to significantly contribute to increased EGP in diabetes. Fructose-1,6-bisphosphatase (FBPase) is a regulated enzyme in gluconeogenesis that is increased in animal models of obesity and insulin resistance. However, whether a specific increase in liver FBPase can result in increased EGP has not been shown. The objective of this study was to determine the role of upregulated liver FBPase in glucose homeostasis. To achieve this goal, we generated human liver FBPase transgenic mice under the control of the transthyretin promoter, using insulator sequences to flank the transgene and protect it from site-of-integration effects. This resulted in a liver-specific model, as transgene expression was not detected in other tissues. Mice were studied under the following conditions: 1) at two ages (24 wk and 1 yr old), 2) after a 60% high-fat diet, and 3) when bred to homozygosity. Hemizygous transgenic mice had an approximately threefold increase in total liver FBPase mRNA with concomitant increases in FBPase protein and enzyme activity levels. After high-fat feeding, hemizygous transgenics were glucose intolerant compared with negative littermates (P < 0.02). Furthermore, when bred to homozygosity, chow-fed transgenic mice showed a 5.5-fold increase in liver FBPase levels and were glucose intolerant compared with negative littermates, with a significantly higher rate of EGP (P < 0.006). This is the first study to show that FBPase regulates EGP and whole body glucose homeostasis in a liver-specific transgenic model. Our homozygous transgenic model may be useful for testing human FBPase inhibitor compounds with the potential to treat patients with type 2 diabetes. 相似文献
11.
The hydrolysis of a phosphate ester can proceed through an intermediate of metaphosphate (dissociative mechanism) or through a trigonal bipryamidal transition state (associative mechanism). Model systems in solution support the dissociative pathway, whereas most enzymologists favor an associative mechanism for enzyme-catalyzed reactions. Crystals of fructose-1,6-bisphosphatase grow from an equilibrium mixture of substrates and products at near atomic resolution (1.3 A). At neutral pH, products of the reaction (orthophosphate and fructose 6-phosphate) bind to the active site in a manner consistent with an associative reaction pathway; however, in the presence of inhibitory concentrations of K+ (200 mm), or at pH 9.6, metaphosphate and water (or OH-) are in equilibrium with orthophosphate. Furthermore, one of the magnesium cations in the pH 9.6 complex resides in an alternative position, and suggests the possibility of metal cation migration as the 1-phosphoryl group of the substrate undergoes hydrolysis. To the best of our knowledge, the crystal structures reported here represent the first direct observation of metaphosphate in a condensed phase and may provide the structural basis for fundamental changes in the catalytic mechanism of fructose-1,6-bisphosphatase in response to pH and different metal cation activators. 相似文献
12.
Kinetic studies on the mechanism and regulation of rabbit liver fructose-1,6-bisphosphatase 总被引:1,自引:0,他引:1
The interaction of Mg2+, AMP, and fructose 2,6-bisphosphate with respect to rabbit liver fructose-1,6-bisphosphatase was investigated by studying initial-rate kinetics of the system at pH 9.5. A rapid-equilibrium Random Bi Bi mechanism is suggested for the rabbit liver enzyme from the kinetic data. Our kinetic findings indicate that Mg2+ and the inhibitor AMP are mutually exclusive in their binding to fructose-1,6-bisphosphatase. This probably is the mechanism for AMP regulation of fructose-1,6-bisphosphatase and thus, to some extent, gluconeogenesis. A kinetic model for the interaction of these ligands with respect to rabbit liver fructose-1,6-bisphosphatase is presented. 相似文献
13.
Muscle fructose-1,6-bisphosphatase (FBPase) is highly sensitive toward inhibition by AMP and calcium ions. In allosteric inhibition by AMP, a loop 52-72 plays a decisive role. This loop is a highly conservative region in muscle and liver FBPases. It is feasible that the same region is involved in the inhibition by calcium ions. To test this hypothesis, chemical modification, limited proteolysis and site directed mutagenesis Glu(69)/Gln were employed. The chemical modification of Lys(71-72) and the proteolytic cleavage of the loop resulted in the significant decrease of the muscle FBPase sensitivity toward inhibition by calcium ions. The mutation of Glu(69)-->Gln resulted in a 500-fold increase of muscle isozyme I(0.5) vs. calcium ions. These results demonstrate the key role that the 52-72 amino acid loop plays in determining the sensitivity of FBPase to inhibition by AMP and calcium ions. 相似文献
14.
Regulation of fructose-1,6-bisphosphatase in yeast by phosphorylation/dephosphorylation 总被引:14,自引:0,他引:14
Fructose-1,6-bisphosphatase was precipitated with purified rabbit antiserum from extracts of 32P-orthophosphate labelled yeast cells, submitted to SDS polyacrylamide gel electrophoresis, extracted from the gels and counted for radioactivity due to 32P incorporation. Fructose-1,6-bisphosphatase from glucose starved yeast cells contained a very low 32P label. During 3 min treatment of the glucose starved cells with glucose the 32P-label increased drastically. Subsequent incubation of the cells in an acetate containing, glucose-free medium led to a label which was again low. Analysis for phosphorylated amino acids in the immunpprecipitated fructose-1,6-bisphosphatase protein from the 3 min glucose-inactivated cells exhibited phospho-serine as the only labelled phosphoamino acid. These data demonstrate a phosphorylation of a serine residue of fructose-1,6-bisphosphatase during this 3 min glucose treatment of glucose starved cells. A concomitant about 60 % inactivation of the enzyme had been shown to occur. The data in addition show a release of the esterified phosphate from the enzyme upon incubation of cells in a glucose-free medium, a treatment which leads to peactivation of enzyme activity. A protein kinase and a protein phosphatase catalysing this metabolic interconversion of fructose-1,6-bisphosphatase are postulated. It is assumed that metabolites accumulating after the addition of glucose exert a positive effect on the kinase activity and/or have a negative effect on the phosphatase activity. A role of the enzymic phosphorylation of fructose-1,6-bisphosphatase in the initiation of complete proteolysis of the enzyme during “catabolite inactivation” is discussed. 相似文献
15.
Studies on the regulation of chloroplast fructose-1,6-bisphosphatase. Activation by fructose 1,6-bisphosphate 总被引:1,自引:0,他引:1
Chloroplast fructose-1,6-bisphosphatase (D-fructose 1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) isolated from spinach leaves, was activated by preincubation with fructose 1,6-bisphosphate. The rate of activation was slower than the rate of catalysis, and dependent upon the temperature and the concentration of fructose 1,6-bisphosphate. The addition of other sugar diphosphates, sugar monophosphates or intermediates of the reductive pentose phosphate cycle neither replaced fructose 1,6-bisphosphate nor modified the activation process. Upon activation with the effector the enzyme was less sensitive to trypsin digestion and insensitive to mercurials. The activity of chloroplast fructose-1,6-bisphosphatase, preincubated with fructose 1,6-bisphosphate, returned to its basal activity after the concentration of the effector was lowered in the preincubation mixture. The results provide evidence that fructose-1,6-bisphosphatase resembles other regulatory enzymes involved in photosynthetic CO2 assimilation in its activation by chloroplast metabolites. 相似文献
16.
17.
Treatment of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with the arginine-specific reagent, phenylglyoxal, irreversibly inactivated both 6-phosphofructo-2-kinase and fructose-6-bisphosphatase in a time-dependent and dose-dependent manner. Fructose 6-phosphate protected against 2,6-phosphofructo-2-kinase inactivation, whereas MgGTP protected against fructose-2,6-bisphosphatase inactivation. Semi-logarithmic plots of the time course of inactivation by different phenylglyoxal concentrations were non-linear, suggesting that more than one arginine residue was modified. The stoichiometry of phenylglyoxal incorporation indicated that at least 2 mol/mol enzyme subunit were incorporated. Enzyme which had been phosphorylated by cyclic-AMP-dependent protein kinase was inactivated to a lesser degree by phenylglyoxal, suggesting that the serine residue (Ser32) phosphorylated by cyclic-AMP-dependent protein kinase interacts with a modified arginine residue. Chymotryptic cleavage of the modified protein and microsequencing showed that Arg225, in the 6-phosphofructo-2-kinase domain, was one of the residues modified by phenylglyoxal. The protection by fructose 6-phosphate against the labelling of chymotryptic fragments containing Arg225, suggests that this residue is involved in fructose 6-phosphate binding in the 6-phosphofructo-2-kinase domain of the bifunctional enzyme. 相似文献
18.
19.
Thioredoxin/fructose-1,6-bisphosphatase affinity in the enzyme activation by the ferredoxin-thioredoxin system 总被引:2,自引:0,他引:2
In this work we analyze the affinity relationship between photosynthetic fructose-1,6-bisphosphatase and ferredoxin and thioredoxin from spinach leaves, two components of the proposed light-activation system of this enzyme, using affinity techniques on ferredoxin- and thioredoxin-Sepharose columns. Oxidized and reduced ferredoxin did not show enzyme affinity, whereas thioredoxin, both the oxidized and the dithiothreitol-reduced form, exhibited a strong bisphosphatase affinity at pH 7.5; this thioredoxin/enzyme affinity appears diminished at pH 8.2. When the affinity experiments were performed in the presence of 5 mM Mg2+, only 30% and 12% of the bisphosphatase remained bound to the thioredoxin-Sepharose at pH 7.5 and 8.0, respectively; these percentages were reduced to 6% when the Mg2+ concentration increased to 10 mM. These results suggest that a rise of stromal pH and Mg2+ concentration can account for a loosening of the thioredoxin/bisphosphatase linkage, which could be of physiological significance in the dark-light transition. Studies on the nature of the chemical groups responsible for the affinity have shown that the thioredoxin/bisphosphatase linkage is concerned with the existence of hydrophobic clusters. We have found no difference in the behaviour of the chloroplastic thioredoxins f and m, and the cytoplasmic ones cf and cm. These results support the existence of an in vivo thioredoxin/fructose-1,6-bisphosphatase interaction, in accordance with the light-activation mechanism by the ferredoxin-thioredoxin system. 相似文献
20.
Eric Kitas Peter Mohr Bernd Kuhn Paul Hebeisen Hans Peter Wessel Wolfgang Haap Armin Ruf Jörg Benz Catherine Joseph Walter Huber Ruben Alvarez Sanchez Axel Paehler Agnes Benardeau Marcel Gubler Brigitte Schott Effie Tozzo 《Bioorganic & medicinal chemistry letters》2010,20(2):594-599
Sulfonylureido thiazoles were identified from a HTS campaign and optimized through a combination of structure–activity studies, X-ray crystallography and molecular modeling to yield potent inhibitors of fructose-1,6-bisphosphatase. Compound 12 showed favorable ADME properties, for example, F = 70%, and a robust 32% glucose reduction in the acute db/db mouse model for Type-2 diabetes. 相似文献