首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.  相似文献   

2.
We have continuously measured protein osmotic pressure of blood and lymph in sheep to compare two kinds of needle osmometers (rigid and flexible) with a membrane osmometer (Wescor). We also compared the averaged values of the continuous measurement with osmotic pressure calculated from total protein and albumin fraction, using the Yamada equation. The rigid-needle and membrane osmometers showed excellent correlation (y = 1.00x + 0.06; r greater than 0.99). The flexible-needle osmometer tended to overestimate osmotic pressure (avg 16%). We used the rigid-needle osmometer for continuous measurements of protein osmotic pressure of blood and lymph in anesthetized or unanesthetized sheep to observe changes in protein osmotic pressure of blood and lymph through the three different interventions. The relationship between the theoretical values (x) and the continuous measurements (y) of osmotic pressure was good (y = 0.99x + 0.16, r = 0.97), but after various interventions, the continuously measured protein osmotic pressure tended to exceed the calculated measurements. The continuous measurement should be monitored with spot samples measured in a stationary osmometer or by calculation of osmotic pressure from total protein concentration and albumin fraction.  相似文献   

3.
We measured the osmotic pressure of diffusible myoplasmic proteins in frog (Rana temporaria) skeletal muscle fibers by using single Sephadex beads as osmometers and dialysis membranes as protein filters. The state of the myoplasmic water was probed by determining the osmotic coefficient of parvalbumin, a small, abundant diffusible protein distributed throughout the fluid myoplasm. Tiny sections of membrane (3.5- and 12-14-kDa cutoffs) were juxtaposed between the Sephadex beads and skinned semitendinosus muscle fibers under oil. After equilibration, the beads were removed and calibrated by comparing the diameter of each bead to its diameter measured in solutions containing 3-12% Dextran T500 (a long-chain polymer). The method was validated using 4% agarose cylinders loaded with bovine serum albumin (BSA) or parvalbumin. The measured osmotic pressures for 1.5 and 3.0 mM BSA were similar to those calculated by others. The mean osmotic pressure produced by the myoplasmic proteins was 9.7 mOsm (4 degrees C). The osmotic pressure attributable to parvalbumin was estimated to be 3.4 mOsm. The osmotic coefficient of the parvalbumin in fibers is approximately 3.7 mOsm mM(-1), i.e., roughly the same as obtained from parvalbumin-loaded agarose cylinders under comparable conditions, suggesting that the fluid interior of muscle resembles a simple salt solution as in a 4% agarose gel.  相似文献   

4.
The phase diagram of DOPE/water dispersions was investigated by NMR and X-ray diffraction in the water concentration range from 2 to 20 water molecules per lipid and in the temperature range from -5 to +50 degrees C. At temperatures above 22 degrees C, the dispersions form an inverse (HII) phase at all water concentrations. Below 25 degrees C, an HII phase occurs at high water concentrations, an L alpha phase is formed at intermediate water concentrations, and finally the system switches back to an HII phase at low water concentrations. The enthalpy of the L alpha-HII-phase transition is +0.3 kcal/mol as measured by differential scanning calorimetry. Using 31P and 2H NMR and X-ray diffraction, we measured the trapped water volumes in HII and L alpha phases as a function of osmotic pressure. The change of the HII-phase free energy as a function of hydration was calculated by integrating the osmotic pressure vs trapped water volume curve. The phase diagram calculated on the basis of the known enthalpy of transition and the osmotic pressure vs water volume curves is in good agreement with the measured one. The HII-L alpha-HII double-phase transition at temperatures below 22 degrees C can be shown to be a consequence of (i) the greater degree of hydration of the HII phase in excess water and (ii) the relative sensitivities with which the lamellar and hexagonal phases dehydrate with increasing osmotic pressure. These results demonstrate the usefulness of osmotic stress measurements to understand lipid-phase diagrams.  相似文献   

5.
Critical Water Potential for Stomatal Closure in Sitka Spruce   总被引:1,自引:0,他引:1  
Steady state rates of net photosynthesis and stomatal conductance at high water potentials were measured under controlled conditions in a leaf chamber on Sitka spruce [Picea sitchensis (Bong.) Carr.] shoots detached from the forest canopy or on seedlings. The water supply to the seedlings was terminated by excision and the shoot water potential (or critical water potential) and osmotic potential at the onset of stomatal closure measured. The turgor potential was calculated. The initial osmotic potential before insertion of the shoot into the chamber was also measured. Shoot water potential and osmotic potential at stomatal closure, and initial osmotic potential were significantly higher (less negative) in foliage from the lowest level in the canopy compared with foliage in the upper canopy, and higher in shoots of seedlings transferred to low light than in those at high light. Critical water potential also varied with season, being higher in July than in October and November. In all except one instance, turgor potential at the onset of stomatal closure was negative, possibly because of dilution of the cell sap by the extracellular water during the estimate of osmotic potential. Over all the experiments variation in critical water potential was correlated with variation in critical osmotic potential and, to a lesser extent, the initial osmotic potential. However, turgor potential at the critical potential varied from +0.6 to -4.6 bar. This suggests that difference in turgor between the guard cells and subsidiary cells, which controls stomatal aperture, is only loosely coupled with the bulk leaf turgor and hence that bulk leaf turgor is not a good index of the turbor relations of the guard cells.  相似文献   

6.
Osmotic flow of water caused by high concentrations of anionic polyelectrolytes across semipermeable membranes, permeable only to solvent and simple electrolyte, has been measured in a newly designed flow cell. The flow cell features small solution and solvent compartments and an efficient stirring mechanism. We have demonstrated that, while the osmotic pressure of the anionic polyelectrolytes is determined primarily by micro-counterions, the osmotic flow is determined by solution-dependent properties as embodied in the hydrodynamic frictional coefficient which is determined by the polymer backbone segment of the polyelectrolyte. The variation of the osmotic permeability coefficient, L(p)(o), with concentration and osmotic pressure closely correlated with the concentration dependence of this frictional coefficient. These studies confirm previous work that the kinetics of osmotic flow across a membrane impermeable to the osmotically active solute is primarily determined by the diffusive mobility of the solute.  相似文献   

7.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

8.
The dependence of stem elongation on solute import was investigated in etiolated pea seedlings (Pisum sativum L. var Alaska) by excising the cotyledons. Stem elongation was inhibited by 60% within 5 hours of excision. Dry weight accumulation into the growing region stopped and osmotic pressure of the cell sap declined by 0.14 megapascal over 5 hours. Attempts to assay phloem transport via ethylenediaminetetraacetate-enhanced exudation from cut stems revealed no effect of cotyledon excision, indicating that the technique measured artifactual leakage from cells. Despite the drop in cell osmotic pressure, turgor pressure (measured directly via a pressure probe) did not decline. Turgor maintenance is postulated to occur via uptake of solutes from the free space, thereby maintaining the osmotic pressure difference across the cell membrane. Cell wall properties were measured by the pressure-block stress relaxation technique. Results indicate that growth inhibition after cotyledon excision was mediated primarily via an increase in the wall yield threshold.  相似文献   

9.
U. Kutschera 《Planta》1991,184(1):61-66
The relationship between growth, change in cell osmotic pressure and accumulation of osmotic solutes was investigated in hypocotyls of sunflower (Helianthus annum L.) seedlings. During growth in darkness the osmotic pressure decreased by 50% between days 2 and 6 after sowing. After irradiation of dark-grown seedlings with continuous white light (WL) an inhibition of hypocotyl growth was measured, but the osmotic pressure of the growing cells was not lower than in the dark-grown control. Growth in darkness and after WL irradiation was accompanied by an increase in the amount of osmotic substances (soluble sugars) which was proportional to the increase in length of the organ. During growth in continuous WL the cell osmotic pressure decreased by 45 % between days 2 and 6 after sowing. The transfer of WL-grown seedlings to darkness (“re-etiolation”) resulted in a rapid acceleration of hypocotyl growth, but the cell osmotic pressure was the same as that of the WL grown control. Growth in continuous WL was accompanied by a corresponding accumulation of osmotic substances (soluble sugars). The transition from WL to darkness resulted in an enhanced accumulation of osmotica and an increase in cell-wall extensibility. The results indicate that the relative maintenance of cell osmotic pressure during rapid hypocotyl growth in darkness is caused by an enhanced accumulation of soluble sugars into the growing cells of the organ.  相似文献   

10.
Brock TG  Cleland RE 《Planta》1990,182(3):427-431
Rapid cell enlargement in primary leaves of bean is induced by bright white light (WL), gibberellic acid (GA3) or the cytokinin N6-benzyladenine (BA). In previous studies it has been show that all three agents cause an increase in wall extensibility, although by different mechanisms. Here we examine the effects of the three growth promoters on the osmotic potential difference (delta Psi), the accumulation of solutes (delta TSC), the wall yield threshold (Y) and the growth potential (delta Psi -Y). With GA3 and BA, but not WL, there was a rapid decline in delta Psi as measured by the osmotic concentration of expressed sap. Unlike WL, neither GA3 nor BA promoted the accumulation of osmotic solutes. The decline in delta Psi, however, was apparently counteracted by a decline in Y since the growth potential, as measured by the external-osmoticum method, remained unchanged. It is concluded that WL, GA3 and BA all promote cell enlargement of bean leaves by increasing one cellular growth parameter, wall extensibility. Only WL, however, promotes osmotic adjustment during growth.  相似文献   

11.
Han IS  Han MH  Kim J  Lew S  Lee YJ  Horkay F  Magda JJ 《Biomacromolecules》2002,3(6):1271-1275
A new type of biosensor is proposed that combines the recognition properties of "intelligent" hydrogels with the sensitivity and reliability of microfabricated pressure transducers. In the proposed device, analyte-induced changes in the osmotic swelling pressure of an environmentally responsive hydrogel are measured by confining it within a small implantable enclosure between a rigid semipermeable membrane and the diaphragm of a miniature pressure transducer. Proof-of-principle tests of this device were performed in vitro using pH-sensitive hydrogels, with osmotic deswelling data for the same hydrogels used as a benchmark for comparison. The swelling pressure of the hydrogel was accurately determined from osmotic deswelling measurements against reservoirs of known osmotic stress. Values of swelling pressure vs salt concentration measured with a preliminary version of the sensor agree well with osmotic deswelling results. Through modification of the hydrogel with various enzymes or pendant binding moieties, the sensor has the potential to detect a wide range of biological analytes with good specificity.  相似文献   

12.
13.
Okra hypocotyl segments were incubated in solutions of 0.3 or 0.4 M sorbitol at various temperatures and their shrinkage was measured. The result yielded an apparent activation energy for shrinkage of 4.8 kcal/mol, which is close to that of the viscosity of water. This coincidence suggests that the viscosity of water, i.e., the reciprocal function of water conductivity, is a limiting factor for osmotic shrinkage. Abrasion of okra hypocotyl segments with Carborundum substantially increased the rate of their osmotic shrinkage, indicating that the cuticle is the major barrier to water uptake by segments. The apparent activation energy for osmotic shrinkage was 4.5 kcal/mol in abraded segments. By introducing water conductivity into an algorithm, osmotic shrinkage and expansion of hypocotyl segments was successfully predicted by computation with this algorithm. Hence the extent of the contribution of water conductivity in osmotic shrinkage and expansion can be evaluated. Based on this simulation, water conductivity was identified as one of the major factors in governing the elongation growth rate of cells along with the osmotic pressure of the cell sap and the mechanical properties of the cell wall.  相似文献   

14.
The experimentally measured concentration dependence of the osmotic pressure of an equimolar mixture of hen egg ovalbumin and bovine serum albumin at pH 7.0 and 25°C in the presence of 0.15 M NaCl is shown to be quantitatively accounted for by a model in which each protein species is represented by an effective hard sphere. The size of this sphere is determined by analysis of the concentration dependence of the osmotic pressure of the isolated protein.  相似文献   

15.
16.
A series of potassium salts of organic anions were examined for their effect on the volume change of bean shoot mitochondria as measured by spectrophotometric light scatterings. A passive osmotic swelling (substrate independent) as well as an active osmotic swelling (substrate dependent) was shown with a series of organic anions. Both oxidizable substrates and non-oxidizable substrates induce swelling. The monocarboxylic acids including acetate, β-OH-butyrate, propionate, and pyruvate induce active swelling which is partially inhibited by the presence of an ATP generating system or the uncoupler 2,4-dinitrophenol (DNP). Dicarboxylic acids produce less extensive rates and amounts of active swelling. Moreover, the swelling induced by dicarboxylic acids is inhibited less completely by an ATP generating system or by DNP. Metabolizable substrates including citrate, pyruvate, glutarate, and α-oxo-glutarate induced swelling despite their poor rates or lack of oxidation. It was concluded that with these anions, penetration across the inner membrane as measured by osmotic swelling of isolated mitochondria is not the rate limiting step in their metabolism.  相似文献   

17.
A new type of micro-osmometer is described in which water absorption of small tissue samples is measured by a quartz crystal microbalance (QCM). The swelling of the sample deposited on the surface of a quartz crystal is determined by monitoring the change in resonance frequency of the quartz sensor as a function of the vapor pressure in the surrounding environment. The measurement principle is verified by studying the water uptake of poly(vinyl alcohol) films. Reasonable agreement is found between the results obtained by the QCM-based osmometer and previous osmotic pressure measurements made on a similar poly(vinyl alcohol) sample. The feasibility of the new method is demonstrated by measuring the osmotic response of tissue-engineered cartilage samples. It is found that the osmotic pressure of cartilage substantially increases with culture time. The present result is consistent with cartilage models, suggesting that the proteoglycan content governs the compressive resistance of the tissue.  相似文献   

18.
The osmotic effect arising across a porous membrane separating the solution of an electrolyte from water (or a more dilute solution) is ordinarily due to both normal osmosis, as it occurs also with non-electrolytes, and to "anomalous" osmosis. It is shown that the normal osmotic component cannot be measured quantitatively by the conventional comparison with a non-electrolytic reference solute. Anomalous osmosis does not occur with electroneutral membranes. Accordingly, with membranes which can be charged and discharged reversibly (without changes in geometrical structure), such as many proteinized membranes, the osmotic effects caused by an electrolyte can be measured both when only normal osmosis arises (with the membrane in the electroneutral state) and when normal as well as anomalous osmosis occurs (with the membrane in a charged state). The difference between these two effects is the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, with solutions of a variety of electrolytes using a concentration ratio of 2:1 over a wide range of concentrations. The rates of the movement of liquid across the membrane against an inconsequentially small hydrostatic head are recorded instead of, as conventional, the physiologically less significant pressure rises after a standard time.  相似文献   

19.
The swelling behavior of gelatin gels containing proteoglycans (sulphated proteoglycans from bovine intervertebral discs and a hyaluronate proteoglycan from bovine synovial fluid) when immersed in osmotically active solutions of dextran have been measured. The presence of the proteoglycans markedly affects the internal osmotic contribution to the swelling pressure of the gel. These internal osmotic pressures are considerably in excess of the sum of the osmotic activities of the individual components. This behavior is understood in terms of an entropic interaction between the gelatin and the proteoglycan molecules. By use of the “dilute solution” treatment of Flory, the osmotic pressure excesses are related to the volumes and hence dimensions of the interact acting species. A comparison of these values with those calculated by other means shows good agreement. The osmotic behavior of the complex gels can be understood on a mechanistic basis, if we regard the gelatin and sulphated proteoglycans as spheres and the hyaluronate proteoglycan as a rod.  相似文献   

20.
Membrane water transport is an essential event not only in the osmotic cell volume change but also in the subsequent cell volume regulation. Here we investigated the route of water transport involved in the regulatory volume decrease (RVD) that occurs after osmotic swelling in human epithelial Intestine 407 cells. The diffusion water permeability coefficient (Pd) measured by NMR under isotonic conditions was much smaller than the osmotic water permeability coefficient (Pf) measured under an osmotic gradient. Temperature dependence of Pf showed the Arrhenius activation energy (Ea) of a low value (1.6 kcal/mol). These results indicate an involvement of a facilitated diffusion mechanism in osmotic water transport. A mercurial water channel blocker (HgCl2) diminished the Pf value. A non-mercurial sulfhydryl reagent (MMTS) was also effective. These blockers of water channels suppressed the RVD. RT-PCR and immunocytochemistry demonstrated predominant expression of AQP3 water channel in this cell line. Downregulation of AQP3 expression induced by treatment with antisense oligodeoxynucleotides was found to suppress the RVD response. Thus, it is concluded that AQP3 water channels serve as an essential pathway for volume-regulatory water transport in, human epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号