首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microtubule associated system I fibers of the basal apparatus of the flagellate green alga Spermatozopsis similis are noncontractile and display a 28-nm periodicity. Paracrystals with similar periodicities are formed in vitro by SF-assemblin, which is the major protein component of system I fibers. We have determined the amino acid sequence of SF-assemblin and show that it contains two structural domains. The NH2-terminal 31 residues form a nonhelical domain rich in proline. The rod domain of 253 residues is alpha-helical and seems to form a segmented coiled coil with a 29-residue repeat pattern based on four heptads followed by a skip residue. The distinct cluster of acidic residues at the COOH-terminal end of the motifs (periodicity about 4 nm) may be related to tubulin binding of SF-assemblin and/or its self assembly. A similar structure has been predicted from cDNA cloning of beta-giardin, a protein of the complex microtubular apparatus of the sucking disc in the protozoan flagellate Giardia lamblia. Although the rod domains of SF-assemblin and beta-giardin share only 20% sequence identity, they have exactly the same length and display 42% sequence similarity. These results predict that system I fibers and related microtubule associated structures arise from molecules able to form a special segmented coiled coil which can pack into 2-nm filaments. Such molecules seem subject to a strong evolutionary drift in sequence but not in sequence principles and length. This conservation of molecular architecture may have important implications for microtubule binding.  相似文献   

2.
To investigate the functional role of the nonhelical domains of the intermediate filament (IF) protein vimentin, we carried out transient transfection of constructs encoding fusion proteins of these domains with enhanced green fluorescent protein (EGFP). Expression of these fusion proteins did not have any effect on the endogenous IF networks of transfected cells. However, the head domain-EGFP fusion protein localized almost exclusively to the nucleus. This localization could be disrupted in a reversible fashion by chilling cells. Furthermore, the head domain was capable of targeting to the nucleus a strictly cytoplasmic protein, pyruvate kinase. Thus, the vimentin head domain contains information that specifically directs proteins into the nucleus. In contrast, the nonhelical tail domain of vimentin, when expressed as a fusion protein with EGFP, was retained in the cytoplasm. Cytoplasmic retention of tail domain-containing fusion proteins appeared to be dependent on the integrity of the microtubule network. Our results are consistent with a proposal that the nonhelical end domains of vimentin are involved in maintaining an extended IF network by exerting oppositely directed forces along the filaments. The head domains exert a nuclear-directed force while the tail domains extend the IF network toward the cell periphery via a microtubule-dependent mechanism.  相似文献   

3.
The conversion of chick bone procollagen to collagen proceeds in a stepwise fashion to produce a limited number of intermediates. Initial proteolytic cleavages remove NH2-terminal nonhelical extensions and yield an intermediate which remains disulfide-bonded via COOH-terminal extensions. Subsequent stepwise scission of one or two chains of the triple-stranded molecule in its COOH-terminal domain produces intermediates which can only be distinguished after dissociation of the noncovalently bonded alpha chains. A final cleavage in this region produces the collagen molecule and a disulfide-bonded triple-stranded fragment which represents the COOH-terminal domain. In all likelihood the endopeptidases which effect cleavage in the NH2- and COOH-terminal regions differ. More than two enzymes may be required for conversion of procollagen to collagen if the nonhelical domains are not released in an en bloc fashion.  相似文献   

4.
A short nonhelical sequence at the COOH-terminus of vertebrate nonmuscle myosin has been shown to enhance myosin filament assembly. We have analyzed the role of this sequence in chicken intestinal epithelial brush border myosin, using protein engineering/site-directed mutagenesis. Clones encoding the rod region of this myosin were isolated and sequenced. They were truncated at various restriction sites and expressed in Escherichia coli, yielding a series of mutant myosin rods with or without the COOH-terminal tailpiece and with serial deletions from their NH2-termini. Deletion of the 35 residue COOH-terminal nonhelical tailpiece was sufficient to increase the critical concentration for myosin rod assembly by 50-fold (at 150 mM NaCl, pH 7.5), whereas NH2-terminal deletions had only minor effects. The only exception was the longest NH2-terminal deletion, which reduced the rod to 119 amino acids and rendered it assembly incompetent. The COOH-terminal tailpiece could be reduced by 15 amino acids and it still efficiently promoted assembly. We also found that the tailpiece promoted assembly of both filaments and segments; assemblies which have different molecular overlaps. Rod fragments carrying the COOH-terminal tailpiece did not promote the assembly of COOH-terminally deleted material when the two were mixed together. The tailpiece sequence thus has profound effects on assembly, yet it is apparently unstructured and can be bisected without affecting its function. Taken together these observations suggest that the nonhelical tailpiece may act sterically to block an otherwise dominant but unproductive molecular interaction in the self assembly process and does not, as has been previously thought, bind to a specific target site(s) on a neighboring molecule.  相似文献   

5.
Two recently identified collagen molecules, termed twelve-like A and twelve-like B (TL-A and TL-B) have properties similar to type XII collagen. These molecules have been localized in human and calf tissues by immunoelectron microscopy. The observations strongly suggest that both molecules are located along the surface of banded collagen fibers. The epitopes recognized by the antibodies are contained in large, nontriple-helical domains at one end of the collagen helix. The epitopes are visualized at a distance from the surface of the banded fibers roughly equal to the length of the nonhelical domains, suggesting that the nonhelical domains extend from the fibril, while the triple-helical domains are likely to bind directly to the fibril surface. Occasionally, both TL-A and TL-B demonstrate periodic distribution along the fibril surface. The period corresponds to the primary interband distance of the banded fibrils. Not all fibrils in a fiber bundle are labeled, nor is the labeling continuous along the length of labeled fibrils. Simultaneous labeling of TL-A and type VI collagen only rarely shows colocalization, suggesting that TL-A and TL-B do not mediate interactions between the type VI collagen beaded filaments and banded collagen fibrils. Also, interfibrillar distances are approximately equivalent in the presence and absence of these type XII-like molecules. While the results do not directly indicate a specific function for these molecules, the localization at the fibril surface suggests that they mediate interactions between the fibrils and other matrix macromolecules or with cells.  相似文献   

6.
Limited chymotryptic cleavage of soluble chicken gizzard desmin protofilaments allows the characterization of three structurally distinct domains. A surface-exposed very basic amino-terminal region (the headpiece) with an amino acid sequence excluding a-helical organization (7.5 kd) is separated from the perhaps globular carboxy-terminal 48 residues (the tailpiece) by a distinctly different middle domain of approximately 330 residues. This 38 kd domain is very rich in α-helix (at least 83%), and electron microscopy reveals a thin rod with a length of 500 ± 50 Å. Amino acid sequence data also show that the rod domain is interrupted by a nonhelical portion. An a-helical array is able to form a coiled-coil spanning the carboxy-terminal half of the 38 kd domain. The a-type diffraction pattern of 10 nm filaments arises from a coiled-coil conformation displayed through most but not all of the middle domain of the protofilaments.  相似文献   

7.
Correlation of the amino acid sequence with the conformation in tobacco mosaic virus protein is considered in this article. After division of the sequence into groups with helical or nonhelical potential, the segments likely to be helical were related to the X-ray diffraction patterns obtained by Franklin, Caspar, Holmes, and Klug. The approximate locations of these segments within the known boundaries of the subunit were predicted from the radial distribution and helical projection of electron density. As a result of these assignments, the number of possible conformations was also reduced for the nonhelical segments. The structure of the subunit was simulated by flexible models of rubber and electrical tubing, as well as by space-filling Corey-Pauling-Koltun models. These models were used to locate the protein segments impinging upon the ribonucleic acid of the virus. The two pairs of carboxyl groups believed to be responsible for the binding of lead were also tentatively identified on these models as aspartic acid residues 64 and 66 (first pair) and glutamic acid residues 131 and 145 (second pair).  相似文献   

8.
The nucleotide sequences of four cDNA clones, each representing the carboxyterminal portion of a bovine epidermal cytokeratin of the "basic" (type II) subfamily, were determined, i.e., components Ia (Mr 68,000), Ib (Mr 68,000), III (Mr 60,000), and IV (Mr 59,000). The comparison of the sequences with each other and with the human type-II cytokeratin of Mr 56,000 reported by Hanukoglu and Fuchs [24] allows the following conclusions: The four major epidermal keratins of the basic (type II) subfamily, which are co-expressed in keratinocytes of the bovine muzzle, exhibit a high homology (greater than 90%) in the alpha-helical portion, but differ considerably in their nonhelical carboxy-terminal regions. The nonhelical carboxyterminal regions of all four cytokeratins are exceptionally rich in glycine and serine. Within the extrahelical tail, three different domains can be distinguished. The consensus sequence TYR(X)LLEGE which demarcates the end of the alpha-helical rod in all intermediate filaments is followed by a relatively short (22-27 amino acids) intercept rich in hydroxy amino acids and valine (carboxyterminal tail domain C1). This is followed by a long region that is variable in size and sequence, rich in glycine di-, tri-, and tetrapeptides, and contains diverse repeated sequences (domain C2). This is followed by another short (20 residues) hydroxy-amino-acid-rich intercept (domain C3) that ends with a conspicuously basic sequence of approximately four to six carboxyterminal amino acids. The first half of domain C1 is also homologous in all four keratins, suggesting that this region also assumes a common conformation and/or serves a special common function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Nonstructural 2B viroporin is an intracellularly produced pore-forming protein required for effective enteroviral and rhinoviral replication. The sequence of 2B displays two putative interconnected transmembrane domains, which are predicted to insert into the negatively charged membranes of target organelles forming an integral hairpin. The use of an overlapping peptide library that spanned the complete 2B sequence has recently allowed the mapping of the cell plasma membrane porating activity to the partially amphipathic, amino-terminal transmembrane domain (TM1, residues 35-55). We describe here that although the TM1 peptide was effective in permeabilizing uncharged membranes, it induced marginal lysis of anionic bilayers. In fact, only the peptide representing the highly conserved carboxy-terminal transmembrane domain (TM2, residues 59-82) reproduced the capacity of the full 2B protein to efficiently permeabilize bilayers made of anionic phospholipids. Insertion into lipid monolayers and circular dichroism determinations were, however, consistent with penetration of the TM1 helix into both anionic and zwitterionic membranes, while TM2 interacting with membranes assumed a mixture of conformations. Moreover, addition of TM1 strongly stimulated TM2-induced permeabilization of the anionic membranes. In combination, TM1 and TM2 formed a complex that had structural properties, including a high proportion of extended nonhelical secondary structure, that were distinct from those of the individual peptides. Finally, a comparison of antimicrobial and hemolytic activities further underscored the TM1 domain's cytolytic character. Overall, our data support the idea that the cytolytic activity of TM1 in the negatively charged cell endomembranes targeted by 2B viroporin requires the cooperation of both transmembrane domains.  相似文献   

10.
Spectrin is a multidomain cytoskeletal protein, the component three-helix bundle domains are expected to experience mechanical force in vivo. In thermodynamic and kinetic studies, neighboring domains of chicken brain alpha-spectrin R16 and R17 have been shown to behave cooperatively. Is this cooperativity maintained under force? The effect of force on these spectrin domains was investigated using atomic force microscopy. The response of the individual domains to force was compared to that of the tandem repeat R1617. Importantly, nonhelical linkers (all-beta immunoglobulin domains) were used to avoid formation of nonnative helical linkers. We show that, in contrast to previous studies on spectrin repeats, only 3% of R1617 unfolding events gave an increase in contour length consistent with cooperative two-domain unfolding events. Furthermore, the unfolding forces for R1617 were the same as those for the unfolding of R16 or R17 alone. This is a strong indication that the cooperative unfolding behavior observed in the stopped-flow studies is absent between these spectrin domains when force is acting as a denaturant. Our evidence suggests that the rare double unfolding events result from misfolding between adjacent repeats. We suggest that this switch from cooperative to independent behavior allows multidomain proteins to maintain integrity under applied force.  相似文献   

11.
Artemia has evolved the longest known concatenation of hemoglobin domains, the subunit containing nine domains and the subunit having a similar size. Translation of the cDNA sequence of the subunit reveals eight regions of inter-domain polypeptide linking together the nine heme-binding domains, together with partially analogous sequences preceding the first domain and following the last. Analysis of the structural possibilities of the linker sequences suggests how the domains may be organized in the subunit.The interdomain linker sequences were 14%–64% identical (62%–91% similar by Dayhoff substitution matrix) and approximately 14 residues in length including a consensus -Val-Asp-Pro-Val-Thr-Gly-Leu-. The linker composition resembled that of the 11 amino acid pre-A leader sequence of Petromyzon marinus (lamprey) hemoglobin V, the structure of which is known. Prediction of structure from the Artemia linker sequences indicated a nonhelical, turn-associated linker which could be modeled to the Petromyzon leader. Measurements confirmed that such a structure could support the packing of nine Artemia domains into a polymeric subunit of annular shape, two of which subunits (which can be similar or dissimilar) comprise the physiological molecule.The position of interdomain introns and the character of a variable residue early in the linker are compatible with the nine-domain polymer having evolved through gene duplication reflected in globin domain fusion incorporating an extension specifically of the N-terminus. The multiplication of an original single-domain globin gene to give the present nine is estimated from sequence differences, allowing for multiple mutations at individual sites, to have occurred in a period at least 500–700 million years ago.Correspondence to: C.N.A. Trotman 1444  相似文献   

12.
Using immunoelectron microscopy it is demonstrated that desmin subunits missing their complete carboxy-terminal domain are incapable of homopolymeric filament formation in vivo. Furthermore it is shown that, in vimentin-containing cells, desmin integrates into preexisting vimentin filaments resulting in desmin/vimentin heteropolymers. Removal of the amino-terminal or both nonhelical end domains of desmin increases Triton X-100 solubility of the mutant desmin subunits. Expression of desmin mutants containing deletions in the C-terminal part of the rod in vimentin-free cells results in an increase of the Triton X-100 solubility too. In contrast, if expressed in vimentin-containing cells, these mutant subunits remain in the Triton X-100 insoluble fraction. Deletion of the nonhelical carboxy-terminal domain only has no effect on solubility. In vimentin-free cells, stably expressed desmin subunits missing their amino-terminal domains display a slightly higher turnover rate compared to wild-type desmin. Transiently expressed desmin subunits missing 18 or more carboxy-terminal residues of the rod domain are rapidly degraded in vimentin-free cells. In vimentin-containing cells, turnover rates were much less pronounced. Finally, by using site-directed mutagenesis, we were able to map specific residues important for de novo filament assembly within the amino-terminal domain and in the conserved part at the C-terminus of the alpha-helical domain.  相似文献   

13.
The in vitro phosphorylation of chicken desmin by the catalytic subunit of cAMP-dependent protein kinase was analysed. Phosphorylated desmin loses the ability to form intermediate filaments (IFs). Fragmentation at the sole cysteine and mild chymotryptic treatment show a differential phosphorylation of the three structural domains. Only the amino-terminal head domain is the target of the kinase. Peptide analysis shows that serine 29 is fully phosphorylated, while serine 35 and 50 are phosphorylated at least at 22 and 50% respectively. All three sites show the sequence arginine-X-serine with X being a small residue. These results strengthen the view that the nonhelical head domain has a strong influence on filament integrity most likely via a direct influence of some of its arginine residues. Taken together with previous results (Inagaki et al., 1987) on the phosphorylation of vimentin by kinase A, a new view on IFs emerges. Phosphorylation could allow for regulatory processes in assembly and turnover.  相似文献   

14.
C M Venkatachalam 《Biopolymers》1968,6(10):1425-1436
The general conformations of a system of three linked peptide units are studied, and it is found that there are three types of conformations which contain NH…O hydrogen bonding between the first and the third units. One of them is part of a 310-helix, while the other two arc nonhelical. The two nonhelical conformations are very similar, and in both the cases the peptide chain turns around, reversing the direction of progress. Such a conformation can therefore occur in the region where a polypeptide chain folds back on itself, as in the cross-β structure. The method of representing these interesting tripeptide conformations in a (?,ψ) map is described. Examples of such hydrogen-bonded, nonhelical conformations which occur in peptides and proteins are discussed—e.g., in cyclohexaglyeyl, an open tetrapeptide Gly-L -Pro-L -Leu-Gly, and in parts of the lysozyme chain.  相似文献   

15.
Fibroblasts isolated by enzymic digestion of chick embryo tendons have previously been used to examine the kinetics for the secretion of procollagen (Kao, W. W.-Y., Berg, R. A., and Prockop, D. J. (1977) J. Biol. Chem. 252, 8391-8397). The results indicated that the kinetics approximated the sum of two first order processes with half-times of 14 and 115 min. Here, the same fibroblasts were incubated in the presence of 1.53 mM cis-4-hydroxyproline, an analogue of proline, or in the presence of 0.3 mM alpha,alpha'-dipyridyl, an inhibitor of prolyl hydroxylase, so that the cells synthesized procollagen which could not assume a triple helical conformation characteristic of procollagen. Measurements of the secretion of nonhelical procollagen indicated that the kinetics for secretion differed from the kinetics for the secretion of procollagen and approximated a single first order process with a half-time of approximately 130 min. The nonhelical procollagen synthesized and secreted in the presence of either cis-4-hydroxyproline or alpha,alpha'-dipyridyl consisted of disulfide-bonded pro gamma chains of type I procollagen. The results suggested that the intracellular nonhelical procollagen was present in a single metabolic pool and secretion from this pool occurred with a different rate-limiting step than for helical procollagen. Further results indicated that nonhelical procollagen had a high affinity for prolyl hydroxylase and the affinity for the enzyme was greatly reduced if the procollagen was allowed to assume the triple helical conformation characteristic of normal procollagen. The results are consistent with the hypothesis that the secretion of procollagen is influenced by its conformation-dependent interaction with prolyl hydroxylase or other post-translational enzymes.  相似文献   

16.
Replica exchange molecular dynamics (MD) simulations of Met-enkephalin in explicit solvent reveal helical and nonhelical structures. Four predominant structures of Met-enkephalin are sampled with comparable probabilities (two helical and two nonhelical). The energy barriers between these configurations are low, suggesting that Met-enkephalin switches easily between configurations. This is consistent with the requirement that Met-enkephalin be sufficiently flexible to bind to several different receptors. Replica exchange simulations of 32 ns are shown to sample approximately five times more configurational space than constant temperature MD simulations of the same duration. The energy landscape for the replica exchange simulation is presented. A detailed study of replica trajectories demonstrates that the significant increases in temperature provided by the replica exchange technique enable transitions from nonhelical to helical structures that would otherwise be prevented by kinetic trapping. Met-enkephalin (Type Entrez Proteins; Value A61445; Service Entrez Proteins).  相似文献   

17.
Type VII collagen is a major component of anchoring fibrils, which are 800-nm-long centrosymmetrically cross-banded fibrils that are believed to secure the attachment of certain epithelial basement membranes to the underlying stromal matrix. The ultrastructure of the anchoring fibrils is highly variable, suggesting that the fibrils are flexible. Flexibility measurements along the length of the triple-helical domain of type VII procollagen indicate that major flexible sites correlate well with known discontinuities in the (Gly-X-Y)n repeating sequence. Therefore, the helical disruptions may account for the tortuous shapes of anchoring fibrils observed ultrastructurally. The centrosymmetrical banding pattern observed for anchoring fibrils results from the unstaggered lateral packing of antiparallel type VII collagen dimers that form these structures. This antiparallel arrangement is specified by disulfide bonds formed at the margins of a 60-nm overlap of the amino termini. As long as these disulfide bonds remain intact, they protect the amino-terminal overlapping triple helices from collagenase digestion. This disulfide-bonded pair of triple helices is termed C-1. Large nonhelical domains (NC-1) extend from both ends of the anchoring fibrils and are believed to interact with the basement membrane or with anchoring plaques. Rotary shadowing of the NC-1 domains showed trident-like shapes, suggesting that a single alpha-chain contributed the structure of each arm and that the three arms were extended. Biochemical and biophysical analyses of NC-1 domains independently confirm these suggestions and imply that the arms of NC-1 domains are identical and individually capable of interactions with basement membrane components, potentially allowing trivalent interaction of type VII collagen with various macromolecules.  相似文献   

18.
The primary structure of stinging nettle (Urtica dioica) agglutinin has been determined by sequence analysis of peptides obtained from three overlapping proteolytic digests. The sequence of 80 residues consists of two hevein-like domains with the same spacing of half-cystine residues and several other conserved residues as observed earlier in other proteins with hevein-like domains. The hinge region between the two domains is four residues longer than those between the four domains in cereal lectins like wheat germ agglutinin.  相似文献   

19.
Ma D  Liu Z  Li L  Tang P  Xu Y 《Biochemistry》2005,44(24):8790-8800
A 61-residue polypeptide resembling the second and third transmembrane domains (TM23) of the alpha-1 subunit of human glycine receptor and its truncated form, both with the wild-type loop linking the two TM domains (the "23" loop), were studied using high-resolution NMR. Well-defined domain structures can be identified for the TM2, 23 loop, and TM3 regions. Contrary to the popular model of a long and straight alpha-helical structure for the pore-lining TM2 domain for the Cys-loop receptor family, the last three residues of the TM2 domain and the first eight residues of the 23 loop (S16-S26) seem to be intrinsically nonhelical and highly flexible even in trifluoroethanol, a solvent known to promote and stabilize alpha-helical structures. The six remaining residues of the 23 loop and most of the TM3 domain exhibit helical structures with a kinked pi-helix (or a pi-turn) from W34 to C38 and a kink angle of 159 +/- 3 degrees . The tertiary fold of TM3 relative to TM2 is defined by several unambiguously identified long-range NOE cross-peaks within the loop region and between TM2 and TM3 domains. The 20 lowest-energy structures show a left-handed tilt of TM3 relative to TM2 with a tilting angle of 44 +/- 2 degrees between TM2 (V1-Q14) and TM3 (L39-E48) helix axes. This left-handed TM2-TM3 arrangement ensures a neatly packed right-handed quaternary structure of five subunits to form an ion-conducting pore. This is the first time that two TM domains of the glycine receptor linked by the important 23 loop have ever been analyzed at atomistic resolution. Many structural characteristics of the receptor can be inferred from the structural and dynamical features identified in this study.  相似文献   

20.
Human calmodulin-like protein (CLP) is closely related to vertebrate calmodulin, yet its unique cell specific expression pattern, overlapping but divergent biochemical properties, and specific target proteins suggest that it is not an isoform of calmodulin. To gain insight into the structural differences that may underlie the difference target specificities and biochemical properties of CLP when compared to calmodulin, we determined the sequential backbone assignment and associated secondary structure of 144 out of the 148 residues of Ca2+-CLP by using multinuclear multidimensional NMR spectroscopy. Despite a very high overall degree of structural similarity between CLP and calmodulin, a number of significant differences were found mainly in the length of alpha-helices and in the central nonhelical flexible region. Interestingly, the regions of greatest primary sequence divergence between CLP and calmodulin in helices III and VIII displayed only minor secondary structure differences. The data suggest that the distinct differences in target specificity and biochemical properties of CLP and calmodulin result from the sum of several minor structural and side-chain changes spread over multiple domains in these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号