首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
The pathogenesis of lithocholic acid (LCA-Na)-induced cholestasis involves a rapid accumulation of cholesterol in the bile canalicular membrane. Since microtubules play an important role in the intracellular transport of many materials, including cholesterol, the present study was undertaken to assess the extent to which they participate in the development of LCA-Na-induced cholestasis. Rats were pretreated with either colchicine (0.2 mumol/100 g body wt.) or saline solution 90 min before injection with LCA-Na (12 mumol/100 g body wt.). Colchicine, although not increasing bile flow by itself, significantly reduced the cholestasis caused by LCA-Na (57-32% reduction in bile flow) without affecting its metabolism into less toxic bile acids or its distribution in blood, liver or bile. Bile canalicular membranes isolated from animals treated with a combination of colchicine and LCA-Na contained less cholesterol than those treated with LCA-Na alone. However, membranes obtained from rats treated with colchicine alone contained much less cholesterol than did controls. It was found that the total amount of cholesterol accumulated within the bile canalicular membrane following LCA-Na treatment (LCA-Na + colchicine versus colchicine alone compared with LCA-Na versus controls) was unchanged by colchicine treatment. In view of these findings it is suggested that the total amount of cholesterol present within the bile canalicular membrane determines the extent of LCA-Na-induced cholestasis, LCA-Na probably moves cholesterol to the bile canalicular membrane via a microtubule independent pathway, and microtubules are unlikely to function in the transcellular transport of LCA-Na.  相似文献   

2.
Simon et al. (J. Clin. Invest., 70 (1982) 401) studied cholate binding to crude liver plasma membrane vesicles and suggested that the binding may represent mainly the binding to the receptor (carrier) on the canalicular membrane. This hypothesis was supported by finding a good correlation between the number of cholate binding sites on liver plasma membrane and the maximal rate of biliary secretion (Tm) for taurocholate. We studied bile acid binding to sinusoidal and canalicular membrane vesicles isolated from rat liver by a rapid filtration technique. Scatchard analysis of the saturation kinetics showed both [3H]cholate and [3H]chenodeoxycholate bind to two classes of binding site on each membrane. However, little difference was observed between the binding to sinusoidal and canalicular membrane vesicles for each bile acid (cholate, Kd1 = 10.4 and 19.8 microM, n1 = 31.0 23.6 pmol/mg protein, Kd2 = 1.32 and 1.73 mM, n2 = 13.1 and 23.4 nmol/mg protein; and chenodeoxycholate, Kd1 = 0.207 and 0.328 microM, n1 = 36.7 and 27.4 pmol/mg protein, Kd2 = 1.16 and 2.26 mM, and n2 = 20.6 and 24.2 nmol/mg protein; numbers show the mean values sinusoidal and canalicular membrane vesicles, respectively). Chenodeoxycholate binding to sinusoidal membrane vesicles was markedly inhibited by cholate but not by Rose bengal, an organic anion dye. These studies indicate that both membranes (sinusoidal and canalicular membrane vesicles) have two kinds of binding site for bile acids, although no clear difference in the binding properties was observed between the two membranes. Consequently, the cholate binding Simon detected may represent the binding not only to canalicular membrane vesicles but also to sinusoidal membrane vesicles.  相似文献   

3.
We have previously observed that the Ya subunit-containing glutathione (GSH) S-transferases from rat liver exhibit a common high affinity binding site for lithocholic acid, bilirubin, and sulfobromophthalein (BSP) (1984. J. Lipid Res. 25: 1177-1183). Subsequently we found that cholic acid and its amidates bound to a site on the Ya subunit separate for the lithocholic acid/bilirubin site (1986. J. Lipid Res. 27: 955-966). We now have extended this work by showing that amidates of lithocholic acid as well as chenodeoxycholic acid and its amidates competitively displace [14C]lithocholic acid from the Ya subunit. GSH did not inhibit binding of any of the ligands to the high affinity Ya site, but did inhibit binding to the cholic acid site on the Ya subunit. We have also defined the binding sites and effects of GSH on the Yb class of subunits. Lithocholic, chenodeoxycholic, and cholic acids (and amidates) shared a common site on the Yb or Y'b subunit, whereas BSP and bilirubin were bound at a different site. Both the bile acid and organic anion sites on the Yb subunit were inhibited by GSH. The inhibition by GSH in all cases (Ya cholic acid site or Yb bile acid or bilirubin sites) was saturable, of the competitive type, and incomplete at maximal GSH concentrations, suggesting that when GSH binds to its distinct substrate site, it induces a conformational change in the proteins affecting the other binding sites.  相似文献   

4.
The liver cell plasma membranes of fed male Wistar rats were separated into a fraction rich in bile canaliculi and the remainder of the plasma membrane. Electron-microscopically, the bile canalicular fraction consisted almost exclusively of intact bile canaliculi with thier contiguous membranes. The remaining plasma membrane fraction consisted primarily of vesicles and sheets of membranes essentially free from the bile canaliculi. The bile canalicular membrane fraction contained relatively more total lipid, cholesterol, and phospholipid, and relatively less protein. Although the phospholipid composition of the two fractions was the same, the specific activity of the bile canalicular membrane phosholipids, up to 12 h following in vivo administration of [2-3H]glycerol, was always significantly greater than that of the remaining plasma membranes, and showed a biphasic response not found in the latter. The specific activity of the phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine of the bile canalicular membranes rose to a peak within 40 min after administration of the label, fell sharply and then rose to a second peak after 120 min. The specific activity of the sphingomyelin and phosphatidylserine plus phosphatidylinositol of the bile canalicular membranes and of all the phospholipids of the remaining plasma membranes diphasic pattern but increased steadily to reach a maximum at 120 min. The specific activity of biliary phosphatidylcholine followed a pattern identical to that of the phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine of the bile canalicular membrane fraction. These results show that the average rate of turnover of phospholipid in the bile canalicular membranes is considerably greater than that in the remaining plasma membrane and other cell membrane fractions; they indicate that the phospholipid of the bile canalicular membranes exists in two or more pools, turning over a different rates; and they support the concept that biliary phospholipid is derived from the bile canalicular membrane. The results also suggest that bile canalicular phospholipid may be derived from two different sources, in contrast to the remainong plasma membrane.  相似文献   

5.
Rat liver cytosolic proteins were photoaffinity labeled with the synthetic steroid [3H]methyltrienolone in order to identify and characterize hepatic proteins that may participate in the intracellular binding and transport of steroid hormones and other sterols. A male-specific and a female-specific sterol-binding protein (SBP) that migrated to the 4 S region of a sucrose gradient and had similar molecular weights (male-specific 34-kDa protein (SBP34), female-specific 31-kDa protein (SBP31] were thus identified. Experiments were undertaken to determine the biochemical basis for the sex-specific expression of these two proteins. In vivo hormonal manipulations established that the female-specific expression of SBP31 could, in part, be accounted for by the suppressive effects of androgen on SBP31 levels in male rats. In contrast, androgen stimulated expression of the male-specific SBP34, while estrogen and the estrogen-regulated continuous plasma growth hormone profile that is characteristic of adult female rats were suppressive toward this protein. Unlike several other androgen-dependent hepatic proteins, however, SBP34 did not require an intact pituitary for androgen-stimulated expression, nor was its expression stimulated by the intermittent pulses of plasma growth hormone that are characteristic of adult male rats. SBP34 and SBP31 were not induced but were suppressed to various extents by dexamethasone, phenobarbital, and clofibrate, drugs that are known to induce other hepatic proteins involved in steroid binding and metabolism. Competition experiments revealed that SBP31 has a relatively broad ligand specificity, with significant competition for [3H]methyltrienolone binding exhibited by bile acids (chenodeoxycholic acid and lithocholic acid) and a range of steroid hormones (progesterone, estradiol, testosterone, and 5 alpha-dihydrotestosterone) when present in the low micromolar range. No binding was detected with this protein toward cholesterol, triamcinolone acetonide, 5 alpha-androstan-3 alpha,17 beta-diol, cholic acid, and deoxycholic acid. In contrast, SBP34 exhibited greater binding specificity, with competition for [3H]methyltrienolone binding observed only with primary bile acids (cholic acid and chenodeoxycholic acid) and their metabolites (deoxycholic acid and lithocholic acid). On the basis of these binding specificities and the relatively high concentration of bile acids found in the liver, it is proposed that SBP31 and SBP34 function in the intracellular binding and/or transport of bile acids.  相似文献   

6.
Binding of bile acids by 100 000g supernatants from rat liver.   总被引:5,自引:4,他引:1       下载免费PDF全文
1. The binding of glycocholic acid, chenodeoxycholic acid and lithocholic acid to rat liver 1000 000g supernatants was studied by equilibrium dialysis. 2. The binding characteristics of the bile acids suggest that the binding components are involved in bile acid transport. 3. When mixtures of [14C]lithocholic acid and liver supernatants were eluted from columns of Sephadex G-75, a prominent peak of [14C]lithocholic acid appeared with proteins of mol.wt. approx. 40000. A second, smaller, peak of [14C]lithocholic acid was eluted with proteins of mol.wt. approx. 100000. 4. The inclusion of cholic acid, glycocholic acid or chenodeoxycholic acid in the eluting buffer decreased the amount of [14C]lithocholic acid that was eluted with the higher-molecular-weight component.  相似文献   

7.
Bile acid synthesis in cell culture   总被引:2,自引:0,他引:2  
Confluent cultures of Hep G2 cells were found to synthesize chenodeoxycholic and cholic acids continually. Chenodeoxycholic acid was synthesized at the rate of 58 +/- 8.6 micrograms/96 h, a rate more than 7-fold greater than that for cholic acid. Addition of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol but not the -3 alpha, 7 alpha-diol was followed by an increase in cholic acid synthesis, thus indicating a relatively low 12 alpha-hydroxylase activity. Endogenous synthesis of monohydroxy bile acid ester sulfates was found, with maximum rates of 135 and 74 micrograms/96 h for lithocholic and 3 alpha-hydroxy-5-cholenoic acids, respectively. Incubation of Hep G2 cells in medium containing 25% D2O permitted a comparison of the precursor/product relationship of cholesterol with 3 beta-hydroxy-5-cholenoic acid. The pattern of incorporation of deuterium was in accordance with that expected, thus allowing the conclusion that this monohydroxy bile acid is derived from cholesterol and should be considered together with chenodeoxycholic and cholic acids as a primary bile acid.  相似文献   

8.
1. Isolated rat liver was perfused with heparinized whole blood under physiological pressure resulting in the secretion of bile at about the rate observed in vivo. 2. The preparation remained metabolically active for 4h and was apparently normal in function and microscopic appearance. 3. When the perfusate plasma and liver cholesterol pool was labelled by the introduction of [2-(14)C]mevalonic acid the specific radioactivity of the perfusate cholesterol increased. The biliary acids (cholic acid and chenodeoxycholic acid) were labelled and had the same specific radioactivity. 4. Livers removed from rats immediately after, and 40h after, the start of total biliary drainage, were perfused; increased excretion rates of both cholic acid and chenodeoxycholic acid were found when the liver donors had been subjected to biliary drainage. 5. The incorporation of [2-(14)C]mevalonic acid or rat lipoprotein labelled with [(14)C]cholesterol into bile acids was studied. 6. A dissociation between the mass of bile acid excreted and the rate of incorporation of (14)C was found. This was attributed to the changing specific radioactivity of the cholesterol pool acting as the immediate bile acid precursor.  相似文献   

9.
The aim of the present study was to examine the secretion of biliary components in rats during infusion of increasing doses of either deoxycholic acid, chenodeoxycholic acid or cholic acid and to test the hypothesis that biliary phospholipids may regulate the hepatic bile acid secretory capacity. Analysis of bile samples, collected every 10 min throughout the infusion period showed that there was an elevation of bile acid, phospholipid, cholesterol and alkaline-phosphodiesterase secretion, with all the bile acids, peaking and then gradually declining. Their secretory rates maximum differed and were inversely related to their detergent strength. However, the secretory rates maximum and total output of phospholipids and cholesterol were similar for all bile acids infused. The per cent contribution of phosphatidylcholine to total bile acid-dependent phospholipid secretion was reduced from 84% (in the pre-infusion period) to 59, 46 and 13% at the end of the cholic acid, chenodeoxycholic acid and deoxycholic acid infusions, respectively. This decrease in the per cent contribution of phosphatidylcholine was associated with an increase in the contribution of both sphingomyelin and phosphatidylethanolamine. The biliary phospholipid fatty acid pattern corroborated these changes in the phospholipid classes. Since sphingomyelin and phosphatidylethanolamine are major phospholipids in bile canalicular and other hepatocellular membranes, the marked increase in their secretion in bile during the infusion of high doses of bile acids may indicate solubilization of membrane phospholipids, resulting in membrane structural changes responsible for the reduced excretory function of the liver.  相似文献   

10.
The binding characteristics of human epidermal growth factor (EGF) were compared between highly purified canalicular (CMV) and sinusoidal (basolateral) rat liver plasma membrane (SMV) preparations. The dissociation constants (2-3 nM) for these membranes were comparable, while the binding capacity for CMV was approximately half that for SMV. The binding capacity for CMV was too high to be accounted for only by the contamination with sinusoidal membranes, since the measurements of specific activities of various enzymes (Na+,K+-ATPase, alkaline phosphatase, and leucine aminopeptidase) indicated that the extents of the cross contamination with other membrane fractions were at most 10%. Although the physiological function of specific binding of EGF to bile canalicular membrane domain remains to be determined, it may have a role in biliary excretion of EGF. The specific binding of EGF to bile canalicular membranes from rat liver was identified for the first time.  相似文献   

11.
The population levels of intestinal microflora and bile acid composition in the digestive tract were examined in rats fed bile acids to determine the relationships between gastrointestinal microflora and the host. The population level of Bacteroides was increased in the ceca of rats fed cholic acid or deoxycholic acid. In the ileum, the concentration of conjugated bile acid in rats fed cholesterol, cholic acid, hyodeoxycholic acid or lithocholic acid was higher than that in control rats, and was very low in ceca and feces of all the rats. The concentration of total free bile acid was much higher in the ceca than in the ilea of rats fed hyodeoxycholic acid or lithocholic acid. Cholic acid and deoxycholic acid were found in the ilea, ceca and feces of the cholic acid-fed rats. In the deoxycholic acid-fed rats, cholic acid was localized in the ileum. 7-Ketodeoxycholic acid was also found in the ceca of the cholic acid-fed rats. 12-Ketolithocholic acid was found in the feces of rats fed cholic acid or deoxycholic acid. 3-Ketocholanic acid was found in some samples from the lithocholic acid-fed rats. Therefore, some kinds of bile acids influence the population levels of gastrointestinal microflora and bile acid composition in the intestine.  相似文献   

12.
Through labeling with the sodium salt of the photolabile bile salt derivative (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-[3 beta-3H]cholan-24-oyl)- 2-aminoethanesulfonic acid, a bile salt-binding polypeptide with an apparent molecular weight of 100,000 was identified in isolated canalicular but not basolateral (sinusoidal) rat liver plasma membranes. This labeled polypeptide was isolated from octyl glucoside-solubilized canalicular membranes by DEAE-cellulose and subsequent wheat germ lectin Sepharose chromatography. The purified protein still contained covalently incorporated radioactive bile salt derivative and exhibited a single band with an apparent molecular weight of 100,000 on sodium dodecyl sulfate-gels. Antibodies were raised in rabbits and their monospecificity toward this canalicular polypeptide demonstrated by immunoblot analysis. No cross-reactivity was found with basolateral membrane proteins. The antibodies inhibited taurocholate uptake into isolated canalicular but not basolateral membrane vesicles. In addition, the antibodies also decreased efflux of taurocholate from canalicular vesicles. If the canalicular bile salt-binding polypeptide was immunoprecipitated from Triton X-100-solubilized canalicular membranes and subsequently deglycosylated with trifluoromethanesulfonic acid, the apparent molecular weight was decreased from 100,000 to 48,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). These studies confirm previous results in intact liver tissue and strongly indicate that a canalicular specific glycoprotein with an apparent molecular weight of 100,000 is directly involved in canalicular excretion of bile salts.  相似文献   

13.
Binding of bile acids by glutathione S-transferases from rat liver   总被引:4,自引:0,他引:4  
Binding of bile acids and their sulfates and glucuronides by purified GSH S-transferases from rat liver was studied by 1-anilino-8-naphthalenesulfonate fluorescence inhibition, flow dialysis, and equilibrium dialysis. In addition, corticosterone and sulfobromophthalein (BSP) binding were studied by equilibrium and flow dialysis. Transferases YaYa and YaYc had comparable affinity for lithocholic (Kd approximately 0.2 microM), glycochenodeoxycholic (Kd approximately to 60 microM), and cholic acid (Kd approximately equal 60 microM), and BSP (Kd approximately 0.09 microM). YaYc had one and YaYa had two high affinity binding sites for these ligands. Transferases containing the Yb subunit had two binding sites for these bile acids, although binding affinity for lithocholic acid (Kd approximately 4 microM) was lower than that of transferases with Ya subunit, and binding affinities for the other bile acids were comparable to the Ya family. Sulfated bile acids were bound with higher affinity and glucuronidated bile acids with lower affinity by YaYa and YaYc than the respective parent bile acids. In the presence of GSH, binding of lithocholate by YaYc was unchanged and binding by YbYb' was inhibited. Conversely, GSH inhibited the binding of cholic acid by YaYc but had less effect on binding by YbYb'. Cholic acid did not inhibit the binding of lithocholic acid by YaYa.  相似文献   

14.
Cloning, expression, and regulation of lithocholic acid 6 beta-hydroxylase.   总被引:3,自引:0,他引:3  
We have isolated a hamster liver cDNA whose expression is induced upon feeding hamsters with a cholic acid-rich diet. It was identified as a cytochrome P450 family 3 protein, by sequence homology, and named CYP3A10. The activity of CYP3A10 was determined by transient expression of its cDNA in transfected COS cells and was found to hydroxylate lithocholic acid at position 6 beta. CYP3A10 RNA is 50-fold higher in males than in female hamsters. In males, it appears to be regulated by age with expression highest after puberty. Shortly after weaning (28 days), cholic acid feeding of male hamsters elevates the level of message over that of hamsters fed with normal laboratory chow. Females do not exhibit regulation by cholic acid. In hamster liver, murideoxycholic acid, the 6 beta-metabolite of lithocholic acid, is the major hydroxylated product of lithocholic acid. Lithocholic acid 6 beta-hydroxylase (6 beta-hydroxylase) activity is greatly diminished in hamster female liver microsomes as would be expected due to the lack of CYP3A10 mRNA in females. Additionally, male liver microsomal 6 beta-hydroxylase activity was increased by cholic acid feeding, consistent with the cholic acid-mediated induction of its RNA. These results indicate that, in male hamsters, 6 beta-hydroxylation is the major pathway for detoxification of lithocholate and that, likely, CYP3A10 is responsible for that activity.  相似文献   

15.
The hepatic transport of the immunosuppressive Cyclosporin A (CyA) was studied using liposomal phospholipid membranes, freshly isolated rat hepatocytes and bile canalicular plasma membrane vesicles from rat liver. The Na(+)-dependent, saturable uptake of the bile acid 3H-taurocholate into isolated rat liver cells was apparently competitively inhibited by CyA. However, the uptake of CyA into the cells was neither saturable, nor temperature-dependent nor Na(+)-dependent, nor could it be inhibited by bile salts or CyA-derivatives, indicating passive diffusion. In steady state depolarization fluorescence studies, CyA caused a concentration-dependent decrease of anisotropy, indicating a membrane fluidizing effect. Ion flux experiments demonstrated that CyA dramatically increases the permeability of Na+ and Ca2+ across phospholipid membranes in a dose- and time-dependent manner, suggesting a iontophoretic activity that might have a direct impact on cellular ion homeostasis and regulation of bile acid uptake. Photoaffinity labeling with a [3H]-labeled photolabile CyA-derivative resulted in the predominant incorporation of radioactivity into a membrane polypeptide with an apparent molecular weight of 160,000 and a minor labeling of polypeptides with molecular weights of 85,000-90,000. In contrast, use of a photolabile bile acid resulted in the labeling of a membrane polypeptide with an apparent molecular weight of 110,000, representing the bile canalicular bile acid carrier. The photoaffinity labeling as well as CyA transport by canalicular membrane vesicles were inhibited by CyA and the p-glycoprotein substrates daunomycin and PSC-833, but not by taurocholate, indicating that CyA is excreted by p-glycoprotein. CyA uptake by bile canalicular membrane vesicles was ATP-dependent and could not be inhibited by taurocholate. CyA caused a decrease in the maximum amount of bile salt accumulated by the vesicles with time. However, initial rates of [3H]-taurocholate uptake within the first 2.5 min remained unchanged at increasing CyA concentrations. In summary, the data indicate that CyA does not directly interact with the hepatic bile acid transport systems. Its cholestatic action may rather be the result of alterations in membrane fluidity, intracellular effects and an interaction with p-glycoprotein.  相似文献   

16.
The surface distribution of the plasma membrane Ca2+ (Mg2+)-ATPase (ecto-ATPase) in rat hepatocytes was determined by several methods. 1) Two polyclonal antibodies specific for the ecto-ATPase were used to examine the distribution of the enzyme in frozen sections of rat liver by immunofluorescence. Fluorescent staining was observed at the bile canalicular region of hepatocytes. 2) Plasma membranes were isolated from the canalicular and sinusoidal regions of rat liver. The specific activity of ecto-ATPase in the canalicular membranes was 22 times higher than that of sinusoidal membranes. The enrichment of the ecto-ATPase activity in the canalicular membrane is closely parallel to that of two other canalicular membrane markers, gamma-glutamyltranspeptidase and leucine aminopeptidase. 3) By immunoblots with polyclonal antibodies against the ecto-ATPase and the Na+,K+-ATPase, it was found that the ecto-ATPase protein was only detected in canalicular membranes and not in sinusoidal membranes, while the Na+,K+-ATPase protein was only detected in sinusoidal membranes and not in canalicular membranes. These results indicate that the ecto-ATPase is enriched in the canalicular membranes of rat hepatocytes.  相似文献   

17.
The influence of 4 weeks treatment with fish oil and coconut oil enriched diets on the chemical composition of rat liver plasma membranes and LDL and on the binding of LDL to liver membranes was investigated. Rats fed fish oil diet showed a total, LDL and HDL plasma cholesterol concentration lower than the values observed in rats fed coconut oil and to a lesser extent lower than those of rats fed standard laboratory diet. LDL of rats on fish oil diet had a relative percentage of cholesterol and phospholipid lower, while that of triacylglycerol was greater. Furthermore, fish oil feeding was associated with a greater concentration of n - 3 fatty acids and a lower arachidonic and linoleic acid content in LDL. Liver plasma membranes isolated from fish oil rats showed a higher percentage of n - 3 fatty acids, while only a trace amount of these fatty acids was found in control and coconut oil fed animals. In binding experiments performed with LDL and liver membranes from fish oil fed rats and control rats, binding affinity (Kd = 3.47 +/- 0.93 and 4.56 +/- 1.27, respectively) was significantly higher (P less than 0.05) as compared to that found using membranes and lipoprotein from coconut oil fed rats (Kd = 6.82 +/- 2.69). In cross-binding experiments performed with fish oil LDL and coconut oil liver plasma membranes or coconut oil LDL and fish oil liver plasma membranes, the LDL binding affinity was comparable and similar to that found in fish oil fed animals. No difference was found in the Bmax among all the groups of binding experiments. Our data seem to indicate that during fish oil diet the higher binding affinity of LDL to liver plasma membranes might be partly responsible of the hypocholesterolemic action of marine oil rich diet as compared to saturated diet. Furthermore, the modifications of binding affinity induced by changes of LDL and membrane source, suggest that lipoprotein and liver plasma membrane composition may be an important variable in binding studies.  相似文献   

18.
Canalicular plasma membranes were isolated from rat liver homogenates using nitrogen cavitation and calcium precipitation methods. Compared with homogenates, the membranes were enriched 55- to 56-fold in gamma-glutamyltransferase, aminopeptidase M, and alkaline phosphatase activities and showed very low enrichment in markers of other membranes. By electron microscopy, the membrane preparation contained neither junctional complexes nor contaminating organelles and consisted exclusively of vesicles. The presence of vesicles was also evident from the osmotic sensitivity of D-[6-3H]glucose uptake into the membrane preparation. Antisera obtained from rabbits immunized with highly purified rat kidney gamma-glutamyltransferase inhibited the transferase activity of intact or Triton X-100-solubilized membranes by 45-55%. Treatment of vesicles with anti-gamma-glutamyltransferase antisera and anti-rabbit IgG antisera increased the apparent density of the membranes during sucrose density gradient centrifugation. gamma-Glutamyltransferase and aminopeptidase M activities were selectively removed from the vesicles by limited proteolysis with papain without changing the intravesicular space or alkaline phosphatase activity of the membranes. Specific binding of anti-gamma-glutamyltransferase antibody to the outer surface of isolated hepatocytes was observed as measured by the antisera and 125I-labeled protein A; binding followed saturation kinetics with respect to antibody concentration. These data indicate that the isolated canalicular membrane vesicles are exclusively oriented right-side-out and that gamma-glutamyltransferase and aminopeptidase M are located on the luminal side of rat liver canalicular plasma membranes.  相似文献   

19.

A previous study demonstrated that a dietary treatment of young geese with cholesterol and cholic acid raises lipid concentrations in the liver. The present study was carried out to investigate whether such a lipid accumulation caused by those hyperlipidemic compounds can be intensified by low dietary choline concentrations. Therefore, 38 eight‐week old geese were divided into four groups of 9 or 10 animals each and received a basal diet poor in choline which consisted predominately of maize and soy protein isolate over a period of 8 weeks. Treatment factors were supplementation of diets with cholesterol and cholic acid (0 vs. 5 g of cholesterol and cholic acid each per kg) and supplementation of choline chloride (0 vs. 1.5g/kg). Final body weights as well as carcass weights were neither influenced significantly by dietary treatment with cholesterol and cholic acid nor by low dietary choline concentrations. However, feeding diets supplemented with cholesterol and cholic acid markedly increased liver weights (two‐fold), hepatic triglyceride (3.7‐fold) and cholesterol (12‐fold) concentrations and percentages of monounsaturated fatty acids at the expense of saturated and polyunsaturated fatty acids in the liver. In geese fed diets with cholesterol and cholic acid, insufficient choline supply did not intensify, but even slightly reduced hepatic lipid accumulation. Geese fed diets with cholesterol and cholic acid exhibited markedly increased levels of cholesterol, triglycerides and phospholipids in plasma and very low‐density lipoproteins, regardless of the choline supply. Muscle tissue of geese fed diets supplemented with cholesterol and cholic acid exhibited also increased concentrations of triglycerides and cholesterol whereas the fatty acid composition of muscle lipids remained unchanged. Among geese without hyperlipidemic treatment, concentrations of triglycerides in plasma and very low‐density lipoproteins as well as the concentrations of phosphatidylcholine in liver and muscle tissue were not reduced by low dietary choline concentrations. Therefore, it is suggested that those animals were able to synthesize endogenous sufficient choline.  相似文献   

20.
It has been shown that lithocholic glucuronide is more cholestatic than lithocholic acid (LCA), as well as its taurine and glycine conjugates. Furthermore, LCA hydroxylation is thought to be a major detoxifying mechanism. Therefore, the role of LCA glucuronidation and hydroxylation was investigated during the development of LCA-induced cholestasis and recovery from it. Male rats received a bolus intravenous injection of [14C]LCA (12 mumol/100 g body weight) and bile samples were collected every 30 min for 5 h. Bile flow (BF) was reduced immediately after LCA injection, dropping to 40% of basal BF at 60 min. It then started to increase, reaching normal bile flow values at 3.5 h. Morphologically, canalicular lesions were dominant at 60 min and virtually absent at 2 h. At 60 min (maximal cholestasis), 30% of the LCA injected was secreted in bile, 20% was found in plasma while the other 50% was recovered in the liver and distributed mainly in plasma membranes, microsomes and cytosol. At the end of the experiment (normal BF), 20% of the LCA injected was still in the liver but was present mainly in the cytosol. In bile, within 30 min after injection, 46% of the LCA secreted was lithocholic glucuronide, 24% was conjugated with taurine and glycine, and 21% was in the form of hydroxylated bile acids. During the recovery period, lithocholic glucuronide secretion decreased to 18-25%. Taurine and glycine conjugate secretion increased to a maximum of 43% at 60 min, after which it was reduced to 21-28%. In contrast, hydroxylated metabolites were elevated during the recovery periods, reaching a maximum (45%) at 120 min and remaining constant thereafter. These results suggest that: (i) LCA binding to plasma membranes and microsomes appeared to correlate with the development of cholestasis; (ii) LCA glucuronidation may initiate and/or contribute to LCA-induced cholestasis; and (iii) hydroxylation predominates during recovery from cholestasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号