首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Respecification of vertebral identities by retinoic acid.   总被引:17,自引:0,他引:17  
  相似文献   

3.
4.
5.
The Hox genes are a class of putative developmental control genes that are thought to be involved in the specification of positional identity along the anteroposterior axis of the vertebrate embryo. It is apparent from their expression pattern that their regulation is dependent upon positional information. In a previous analysis of the Hox-1.1 promoter in transgenic mice, we identified sequences that were sufficient to establish transgene expression in a specific region of the embryo. The construct used, however, did not contain enough regulatory sequences to reproduce all aspects of Hox-1.1 expression. In particular, neither a posterior boundary nor a restriction of expression to prevertebrae was achieved. Here we show correct regulation by Hox-1.1 sequences in transgenic mice and identify the elements responsible for different levels of control. Concomitant with the subdivision of mesodermal cells into different lineages during gastrulation and organogenesis, Hox-1.1 expression is restricted to successively smaller sets of cells. Distinct elements are required at different stages of development to execute this developmental programme. One position-responsive element (130 bp nontranslated leader) was shown to be crucial for the restriction of expression not only along the anteroposterior axis of the embryo, setting the posterior border, but also along the dorsoventral axis of the neural tube and to the lineage giving rise to the prevertebrae. Thus, Hox-1.1 expression is established in a specific region of the embryo and in a specific lineage of the mesoderm by restricting the activity of the promoter by the combined effect of several regulatory elements.  相似文献   

6.
7.
8.
9.
10.
Exogenous retinoic acid (RA) has teratogenic effects on vertebrate embryos and alters Hox-C gene expression in vivo and in vitro. We wish to examine whether RA has a role in the normal regulation of Hox-C genes, and whether altered Hox-C gene expression in response to RA leads to abnormal morphology. The expression of 3' Hox-2 genes (Hox-2.9, Hox-2.8, Hox-2.6 and Hox-2.1) and a 5' gene (Hox-2.5) were examined by whole-mount in situ hybridization on embryos 4 hours after maternal administration of teratogenic doses of RA on embryonic day 7 to 9. The expression of the 3' Hox-2 genes was found to be ectopically induced in anterior regions in a stage-specific manner. The Hox-2.9 and Hox-2.8 genes were induced anteriorly in the neurectoderm in response to RA on day 7 but not at later stages. Expression of Hox-2.6 and Hox-2.1 was ectopically induced anteriorly in neurectoderm in response to RA on day 8. Hox-2.1 remained responsive on day 9, whereas Hox-2.6 was no longer responsive at this stage. The expression of the 5' gene Hox-2.5 was not detectably altered at any of these stages by RA treatments. We also examined the response of other genes whose expression is spatially regulated in early embryos. The expression of En-2 and Wnt-7b was not detectably altered by RA, whereas RAR beta expression was induced anteriorly by RA on day 7 and 8. Krox-20 expression was reduced in a stage- and region-specific manner by RA. The ectopic anterior expression of Hox-2.8 and Hox-2.9 induced by RA on day 7 was persistent to day 8, as was the altered expression of Krox-20. The altered pattern of expression of these genes in response to RA treatment on day 7 may be indicative of a transformation of anterior hindbrain to posterior hindbrain, specifically, a transformation of rhombomeres 1 to 3 towards rhombomere 4 identity with an anterior expansion of rhombomere 5. The ectopic expression of the 3' Hox-2 genes in response to RA is consistent with a role for these genes in mediating the teratogenic effects of RA; the rapid response of the Hox-C genes to RA is consistent with a role for endogenous RA in refining 3' Hox-C gene expression boundaries early in development.  相似文献   

11.
Sequence and embryonic expression of the murine Hox-3.5 gene.   总被引:2,自引:0,他引:2  
The murine Hox-3.5 gene has been mapped and linked genomically to a position 18 kb 3' of its most 5' locus neighbour, Hox-3.4, on chromosome 15. The sequence of the Hox-3.5 cDNA, together with the position of the gene within the locus, show it to be a paralogue of Hox-2.6, Hox-1.4 and Hox-4.2. The patterns of embryonic expression for the Hox-3.5 gene are examined in terms of three rules, proposed to relate a Hox gene's expression pattern to its position within the locus. The anterior boundaries of Hox-3.5 expression in the hindbrain and prevertebral column lie anterior to those of Hox-3.4 and all other, more 5'-located Hox-3 genes. Within the hindbrain, the Hox-3.5 boundary is seen to lie posterior to that of its paralogue, Hox-2.6, by a distance equal to about the length of one rhombomere. Patterns of Hox-3.5 expression within the oesophagus and spinal cord, but not the testis, are similar to those of other Hox-3 genes, Hox-3.3 and Hox-3.4.  相似文献   

12.
13.
14.
15.
16.
17.
To characterize cis-acting regulatory elements of the murine homeobox gene, Hox-2.2, transgenic mouse lines were generated that contained the LacZ reporter gene under the control of different fragments from the presumptive Hox-2.2 promoter. A promoter region of 3600 base pairs (bp) was identified, which reproducibly directed reporter gene expression into specific regions of developing mouse embryos. At 8.5 days postcoitum (p.c.) reporter gene activity was detected in posterior regions of the lateral mesoderm and, in subsequent developmental stages, expression of the LacZ gene was restricted to specific regions of the developing limb buds and the mesenchyme of the ventrolateral body region. This pattern of Hox-2.2-LacZ expression was found in all transgenic embryos that have been generated with the 3.6 kb promoter fragment (two founder embryos and embryos from five transgenic lines). In addition, embryos from two transgenic mouse lines expressed the reporter gene at low levels in the developing central nervous system (CNS). Our results are consistent with the idea that in addition to their presumptive role in CNS and vertebrae development, Hox-2.2 gene products are involved in controlling pattern formation in developing limbs.  相似文献   

18.
19.
20.
Structure and neural expression of a zebrafish homeobox sequence   总被引:1,自引:0,他引:1  
P R Nj?lstad  A Molven  H G Eiken  A Fjose 《Gene》1988,73(1):33-46
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号