首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
All songbirds learn to sing during postnatal development but then display species differences in the capacity to learn song in adulthood. While the mechanisms that regulate avian vocal plasticity are not well characterized, one contributing factor may be the composition of N-methyl-D-aspartate receptors (NMDAR). Previous studies of an anterior forebrain pathway implicated in vocal plasticity revealed significant regulation of NMDAR subunit expression during the developmental sensitive period for song learning. Much less is known about the developmental regulation of NMDAR subunit expression in regions that participate more directly in motor aspects of song behavior. We show here that an increase in NR2A subunit mRNA and a decrease in NR2B subunit mRNA within the vocal motor pathway accompany song learning in zebra finches; however, manipulations that can alter the timing of song learning did not alter the course of these developmental changes. We also tested whether adult deafening, a treatment that provokes vocal change in songbirds that normally sing a stable song throughout adulthood, would render NMDAR subunit expression more similar to that observed developmentally. We report that NR2A and NR2B mRNA levels did not change within the anterior forebrain or vocal motor pathways after adult deafening, even after substantial changes in song structure. These results indicate that vocal plasticity does not require "juvenile patterns" of NMDAR gene expression in the avian song system.  相似文献   

5.
In passerine songbirds, song learning often is restricted to an early sensitive period and requires the participation of several discrete regions within the anterior forebrain. Activation of N-methyl-D-aspartate (NMDA) receptors is implicated in song learning and in one forebrain song region, the lateral magnocellular nucleus of the anterior neostriatum (IMAN), NMDA receptors decrease in density, their affinity for the antagonist MK-801 increases, and their currents decay more quickly as young male zebra finches lose the ability to imitate new song elements. These developmental changes in NMDA receptor pharmacology and physiology suggest that the subunit composition of NMDA receptors changes developmentally. Here, we have used in situ hybridization and [3H]ifenprodil receptor autoradiography to study the developmental regulation of the NMDA receptor 2B subunit (NR2B) within the anterior forebrain of male zebra finches. NR2B mRNA expression within the IMAN was twice as great in 30-day-old males (early in the sensitive period for song learning) as in adult males, and this developmental decrease in NR2B mRNA expression was mirrored by a decrease in high-affinity (NR2B-associated) [3H]ifenprodil binding within this song region. In another anterior forebrain song region, Area X, NR2B mRNA also declined significantly after 30 days posthatch, but this decline was not accompanied by a significant decrease in [3H]ifenprodil binding. The results are consistent with the hypothesis that developmental changes in NMDA receptor function mediated by regulation of subunit composition contribute to the sensitive period for vocal learning in birds.  相似文献   

6.
N-methyl-d-aspartate receptors (NMDARs) are critical for neuronal maturation and synaptic formation as well as for the onset of long-term potentiation, a process critical to learning and memory in postnatal life. In the current study, we demonstrated that NMDAR subunits undergo spatial, temporal, and sex-specific regulation. During development, we observed increasing NR1 and NR2A expression at the same time as levels of NR2B subunits decreased in the hippocampus and cortex in the fetal guinea pig. We have also shown that glucocorticoids can modulate fetal NMDAR subunit expression in a sex-specific fashion. This is clinically important because synthetic glucocorticoids are administered to pregnant women at risk of preterm labor. Repeated exposure to exogenous glucocorticoids caused a dose-dependent decrease in NR1 mRNA levels and increased NR2A mRNA expression in the female hippocampus at Gestational Day 62. There are significant changes in NMDAR subunit expression in late gestation. It is possible that these alter NMDA-dependent signaling at this time. Prenatal exposure to exogenous glucocorticoids modifies the trajectory of NMDAR subunit expression in females but not in males.  相似文献   

7.
We have investigated the role of N-methyl-d-aspartate receptors (NMDARs) and γ-aminobutyric acid receptors type A (GABAARs) at an early stage of P19 neuronal differentiation. The subunit expression was profiled in 24-hour intervals with RT-PCR and functionality of the receptors was verified via fluo-3 imaging of Ca2+ dynamics in the immature P19 neurons showing that both NMDA and GABA excite neuronal bodies, but only polyamine-site sensitive NMDAR stimulation leads to enhanced Ca2+ signaling in the growth cones. Inhibition of NR1/NR2B NMDARs by 1 μM ifenprodil severely impaired P19 neurite extension and fasciculation, and this negative effect was fully reversible by polyamine addition. In contrast, GABAAR antagonism by a high dose of 200 μM bicuculline had no observable effect on P19 neuronal differentiation and fasciculation. Except for the differential NMDAR and GABAAR profiles of Ca2+ signaling within the immature P19 neurons, we have also shown that inhibition of NR1/NR2B NMDARs strongly decreased mRNA level of NCAM-180, which has been previously implicated as a regulator of neuronal growth cone protrusion and neurite extension. Our data thus suggest a critical role of NR1/NR2B NMDARs during the process of neuritogenesis and fasciculation of P19 neurons via differential control of local growth cone Ca2+ surges and NCAM-180 signaling.  相似文献   

8.
The N-methyl-D-aspartate receptor (NMDAR) is a key molecule mediating brain plasticity related processes. Knowing that alternative splicing of the NMDAR1 (NR1) subunit offers molecular diversity to NMDAR, controls the forward trafficking of the NR1 protein and is important for placing NMDA receptors at synapses, we investigated herein the postnatal developmental expression and the influence of visual deprivation on NR1 subunit splice variants in rat retina. Real-time PCR was performed using oligonucleotide primers specific for N- terminal (NR1a, NR1b) and C-terminal splice variants (NR1-1, NR1-2, NR1-3, NR1-4). The developmental profiles of mRNA expression levels of all NR1 isoforms peaked at the end of the third week. Dark rearing led to reductions in both N- and C-terminal NR1 variants in several developmental ages and a significant interaction between age and visual experience was observed for NR1a, NR1-2 and NR1-4 expression. Our results have demonstrated a developmental and visual experience-dependent regulation of NR1 splicing in rat retina.  相似文献   

9.
1. Aim of the present paper is to study the expression of N-Methyl-D-Aspartate receptor (NMDAR) subunits NR2A and NR2B within mouse visual cortex.2. To investigate the influence of neurotrophic factor of NGF family (neurotrophins) on NMDAR expression we used mutant mice carrying a deletion in the gene for brain-derived neurotrophic factor (BDNF), a well-known neurotrophin expressed in visual cortex.3. Western blot and immunohistochemistry were performed at postnatal day P12–14, P21–23, and adulthood showing that both subunits change during postnatal development.4. Absence of BDNF induced a reduction of NR2A level. This effect was specific since the other subunit investigated, NR2B, was not affected in mutant mice.5. We conclude that endogenous BDNF modulates NMDAR expression in the developing visual cortex.  相似文献   

10.
11.
The N-methyl-D-aspartate (NMDA) type of glutamate receptor (NMDAR) plays central roles in normal and pathological neuronal functioning. We have examined the regulation of the NR1 subunit of the NMDAR in response to excessive activation of this receptor in in vitro and in vivo models of excitotoxicity. NR1 protein expression in cultured cortical neurons was specifically reduced by stimulation with 100 microM NMDA or glutamate. NMDA decreased NR1 protein amounts by 71% after 8 h. Low NMDA concentrations (< or = 10 microM) had no effect. NR1 down-regulation was inhibited by the general NMDAR antagonist DL-AP5 and also by ifenprodil, which specifically antagonizes NMDARs containing NR2B subunits. Arrest of NMDAR signaling with DL-AP5 after brief exposure to NMDA did not prevent subsequent NR1 decrease. Down-regulation of NR1 did not involve calpain cleavage but resulted from a decrease in de novo synthesis consequence of reduced mRNA amounts. In contrast, NMDA did not alter the expression of NR2A mRNA or newly synthesized protein. In neurons transiently transfected with an NR1 promoter/luciferase reporter construct, promoter activity was reduced by 68% after 2 h of stimulation with NMDA, and its inhibition required extracellular calcium. A similar mechanism of autoregulation of the receptor probably operates during cerebral ischemia, because NR1 mRNA and protein were strongly decreased at early stages of blood reperfusion in the infarcted brains of rats subjected to occlusion of the middle cerebral artery. Because NR1 is the obligatory subunit of NMDARs, this regulatory mechanism will be fundamental to NMDAR functioning.  相似文献   

12.
Hu M  Sun YJ  Zhou QG  Chen L  Hu Y  Luo CX  Wu JY  Xu JS  Li LX  Zhu DY 《Journal of neurochemistry》2008,106(4):1900-1913
Several lines of evidence suggest involvement of NMDA receptors (NMDARs) in the regulation of neurogenesis in adults and the formation of spatial memory. Functional properties of NMDARs are strongly influenced by the type of NR2 subunits incorporated. In adult forebrain regions such as the hippocampus and cortex, only NR2A and NR2B subunits are available to form the receptor complex with NR1 subunit. NR2B is predominant NR2 subunit in any of rat or human neural stem cells (NSCs). Thus, we suppose that NR2B-containing NMDAR should be critical in regulating adult neurogenesis, and thereby playing a role in the formation of spatial memory. In the cultured NSCs derived from the embryonic brain of rats, NR2B subunit-specific NMDAR antagonist Ro25-6981 increased cell proliferation, whereas MK-801, non-selective open-channel blocker of NMDARs, inhibited cell proliferation. Blockade of NR2B-containing NMDAR stimulated neurogenesis in the adult hippocampus and facilitated the formation of spatial memory. The enhanced spatial memory dropped back to base level when the NR2B antagonist-induced neurogenesis was neutralized by 3'-azido-deoxythymidine, a telomerase inhibitor. In addition, blockade of NR2B inhibited neuronal nitric oxide synthase (nNOS) enzymatic activity. In null mutant mice lacking nNOS gene (nNOS−/−), the effects of NR2B antagonist on neurogenesis disappeared. Moreover, nitric oxide donor DETA/NONOate attenuated and nNOS inhibitor 7-nitroindazole enhanced the effect of Ro 25-6981 on NSCs proliferation. Our findings suggest that NR2B-containing NMDAR subtypes negatively regulate neurogenesis in the adult hippocampus by activating nNOS activity and thereby hinder the formation of spatial memory.  相似文献   

13.
The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-d-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G1 phase of cell cycling and decreased the proportion in the S/G2 phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G1 phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.  相似文献   

14.
Early effects of experience on synaptic reorganization and behavior often involve activation of N-methyl-D -aspartate (NMDA) receptors. We have begun to explore the role of this glutamate-receptor subtype in the development of learned birdsong. Song learning in zebra finches occurs during a restricted period that coincides with extensive synaptic reorganization within neural regions controlling song behavior. In one brain region necessary for song learning, the lateral magnocellular nucleus of the anterior neostriatum (lMAN), NMDA receptor binding is twice as high at the onset of song learning as in adulthood. In the present study, we used quantitative autoradiography with the noncompetitive NMDA antagonist [3H]MK-801 to examine more closely the developmental decline in NMDA receptor binding within lMAN and found that it occurred gradually over the period of song learning and was not associated with a particular stage of the learning process. In addition, early isolation from conspecific song did not affect [3H]MK-801 binding in lMAN at 30, 60, or 80 days. Since behavioral studies confirmed that our isolate rearing conditions extended the sensitive period for song learning, we conclude that the normal developmental decline in overall NMDA receptor binding within lMAN does not terminate the capacity for song learning. Finally, early deafening, which prevents both stages of song learning, also did not affect [3H]MK-801 binding in lMAN at 80 days, indicating that the decline in NMDA receptor binding occurs in the absence of auditory experiences associated with song development. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The goals of this research are to (1) determine the changes in the composition of NMDA receptor (NMDAR) subunits in GABAergic interneurons during critical period (CP); and (2) test the effect of chronic blockage of specific NR2 subunits on the maturation of specific GABAergic interneurons. Our data demonstrate that: (1) The amplitude of NMDAR mediated EPSCs (EPSCs(NMDAR) ) was significantly larger in the postCP group. (2) The coefficient of variation (CV), τ(decay) and half-width of EPSCs(NMDAR) were significantly larger in the preCP group. (3) A leftward shift in the half-activation voltages in the postCP vs. preCP group. (4) Using subunit-specific antagonists, we found a postnatal shift in NR2 composition towards more NR2A mediated EPSCs(NMDAR) . These changes occurred within a two-day narrow window of CP and were similar between fast-spiking (FS) and regular spiking (RSNP) interneurons. (5) Chronic blockage of NR2A, but not NR2B, decreased the expression of parvalbumin (PV), but not other calcium binding proteins in layer 2/3 and 4 of barrel cortex. (6) Chronic blockage of NR2A selectively affected the maturation of IPSCs mediated by FS cells. In summary, we have reported, for the first time, developmental changes in the molecular composition of NMDA NR2 subunits in interneurons during CP, and the effects of chronic blockage of NR2A but not NR2B on PV expression and inhibitory synaptic transmission from FS cells. These results support an important role of NR2A subunits in developmental plasticity of fast-spiking GABAergic circuits during CP.  相似文献   

16.
The biophysical properties of NMDA receptors are thought to be critical determinants involved in the regulation of long-term synaptic plasticity during neocortical development. NMDA receptor channel properties are strongly dependent on the subunit composition of heteromeric NMDA receptors. During neocortical development in vivo, the expression of the NMDA receptor 2A (NR2A) subunit is up-regulated at the mRNA and protein level correlating with changes in the kinetic and pharmacological properties of functional NMDA receptors. To investigate the developmental regulation of NMDA receptor subunit expression, we studied NR2 mRNA expression in cultured neocortical neurons. With increasing time in culture, they showed a similar up-regulation of NR2A mRNA expression as described in vivo. As demonstrated by chronic blockade of postsynaptic glutamate receptors in vitro, the regulation of NR2A mRNA was strongly dependent on synaptic activity. In contrast, NR2B mRNA expression was not influenced by activity blockade. Moreover, as shown pharmacologically, the regulation of NR2A mRNA expression was mediated by postsynaptic Ca(2+) influx through both NMDA receptors and L-type Ca(2+) channels. It is interesting that even relatively weak expression of NR2A mRNA was correlated with clearly reduced sensitivity of NMDA receptor-mediated whole-cell currents against the NR2B subunit-specific antagonist ifenprodil. Developmental changes in the expression of NR1 mRNA splice variants were also strongly dependent on synaptic activity and thus might, in addition to regulation of NR2 subunit expression, contribute to developmental changes in the properties of functional NMDA receptors. In summary, our results demonstrate that synaptic activity is a key factor in the regulation of NMDA receptor subunit expression during neocortical development.  相似文献   

17.
18.
Summary.  Using RT-PCR, the present study investigated the effects of formalin administration on mRNA expression coding for NMDA receptor (NR) subunits and splice variants in rat lumbar spinal cord. Subsequent to formalin injection (5%; subcutaneously) into the hind paw of Sprague-Dawley rats, the animals exhibited the typical biphasic behavioural pain response. Spinal cord (L3-6) was prepared six hours after formalin injection. In controls, NR1-b predominated over NR1-a, and NR1-2 and NR1-4 exceeded over NR1-1 and NR1-3, respectively. Regarding the NR2 subunit expression in controls, NR2B exhibited the highest expression, followed by decreasing proportions of NR2C, NR2A, and NR2D. Formalin treatment did not affect NR1 splice variant expression but significantly increased and decreased the proportion of NR2A and NR2C, respectively. In summary, the present data demonstrate adaptive changes in the NR subunit expression pattern in rat spinal cord due to formalin injection. Received August 6, 2001 Accepted November 22, 2001 Published online June 26, 2002  相似文献   

19.
Human midbrain‐derived neural progenitor cells (NPCs) may serve as a continuous source of dopaminergic neurons for the development of novel regenerative therapies in Parkinson’s disease. However, the molecular and functional characteristics of glutamate receptors in human NPCs are largely unknown. Here, we show that differentiated human mesencepahlic NPCs display a distinct pattern of glutamate receptors. In whole‐cell patch‐clamp recordings, l ‐glutamate and NMDA elicited currents in 93% of NPCs after 3 weeks of differentiation in vitro. The concentration‐response plots of differentiated NPCs yielded an EC50 of 2.2 μM for glutamate and an EC50 of 36 μM for NMDA. Glutamate‐induced currents were markedly inhibited by memantine in contrast to 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) suggesting a higher density of functional NMDA than alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (AMPA)/kainate receptors. NMDA‐evoked currents and calcium signals were blocked by the NR2B‐subunit specific antagonist ifenprodil indicating functional expression of NMDA receptors containing subunits NR1 and NR2B. In calcium imaging experiments, the blockade of voltage‐gated calcium channels by verapamil abolished AMPA‐induced calcium responses but only partially reduced NMDA‐evoked transients suggesting the expression of calcium‐impermeable, GluR2‐containing AMPA receptors. Quantitative real‐time PCR showed a predominant expression of subunits NR2A and NR2B (NMDA), GluR2 (AMPA), GluR7 (kainate), and mGluR3 (metabotropic glutamate receptor). Treatment of NPCs with 100 μM NMDA in vitro during proliferation (2 weeks) and differentiation (1 week) increased the amount of tyrosine hydroxylase‐immunopositive cells significantly, which was reversed by addition of memantine. These data suggest that NMDA receptors in differentiating human mesencephalic NPCs are important regulators of dopaminergic neurogenesis in vitro.  相似文献   

20.
N-methyl-D-aspartate receptors (NMDARs), critical mediators of both physiologic and pathologic neurological signaling, have previously been shown to be sensitive to mechanical stretch through the loss of its native Mg(2+) block. However, the regulation of this mechanosensitivity has yet to be further explored. Furthermore, as it has become apparent that NMDAR-mediated signaling is dependent on specific NMDAR subtypes, as governed by the identity of the NR2 subunit, a crucial unanswered question is the role of subunit composition in observed NMDAR mechanosensitivity. Here, we used a recombinant system to assess the mechanosensitivity of specific subtypes and demonstrate that the mechanosensitive property is uniquely governed by the NR2B subunit. NR1/NR2B NMDARs displayed significant stretch sensitivity, whereas NR1/NR2A NMDARs did not respond to stretch. Furthermore, NR2B mechanosensitivity was regulated by PKC activity, because PKC inhibition reduced stretch responses in transfected HEK 293 cells and primary cortical neurons. Finally, using NR2B point mutations, we identified a PKC phosphorylation site, Ser-1323 on NR2B, as a unique critical regulator of stretch sensitivity. These data suggest that the selective mechanosensitivity of NR2B can significantly impact neuronal response to traumatic brain injury and illustrate that the mechanical tone of the neuron can be dynamically regulated by PKC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号