首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular genetic analysis indicates that rhythmic changes in the abundance of the Drosophila lark RNA-binding protein are important for circadian regulation of adult eclosion (the emergence or ecdysis of the adult from the pupal case). To define the tissues and cell types that might be important for lark function, we have characterized the spatial and developmental patterns of lark protein expression. Using immunocytochemical or protein blotting methods, lark can be detected in late embryos and throughout postembryonic development, from the third instar larval stage to adulthood. At the late pupal (pharate adult) stage, lark protein has a broad pattern of tissue expression, which includes two groups of crustacean cardioactive peptide (CCAP)-containing neurons within the ventral nervous system. In other insects, the homologous neurons have been implicated in the physiological regulation of ecdysis. Whereas lark has a nuclear distribution in most cell types, it is present in the cytoplasm of the CCAP neurons and certain other cells, which suggests that the protein might execute two different RNA-binding functions. Lark protein exhibits significant circadian changes in abundance in at least one group of CCAP neurons, with abundance being lowest during the night, several hours prior to the time of adult ecdysis. Such a temporal profile is consistent with genetic evidence indicating that the protein serves a repressor function in mediating the clock regulation of adult ecdysis. In contrast, we did not observe circadian changes in CCAP neuropeptide abundance in late pupae, although CCAP amounts were decreased in newly-emerged adults, presumably because the peptide is released at the time of ecdysis. Given the cytoplasmic localization of the lark RNA-binding protein within CCAP neurons, and the known role of CCAP in the control of ecdysis, we suggest that changes in lark abundance may regulate the translation of a factor important for CCAP release or CCAP cell excitability.  相似文献   

2.
Insect growth and metamorphosis is punctuated by molts, during which a new cuticle is produced. Every molt culminates in ecdysis, the shedding of the remains of the old cuticle. Both the timing of ecdysis relative to the molt and the actual execution of this vital insect behavior are under peptidergic neuronal control. Based on studies in the moth, Manduca sexta, it has been postulated that the neuropeptide Crustacean cardioactive peptide (CCAP) plays a key role in the initiation of the ecdysis motor program. We have used Drosophila bearing targeted ablations of CCAP neurons (CCAP KO animals) to investigate the role of CCAP in the execution and circadian regulation of ecdysis. CCAP KO animals showed specific defects at ecdysis, yet the severity and nature of the defects varied at different developmental stages. The majority of CCAP KO animals died at the pupal stage from the failure of pupal ecdysis, whereas larval ecdysis and adult eclosion behaviors showed only subtle defects. Interestingly, the most severe failure seen at eclosion appeared to be in a function required for abdominal inflation, which could be cardioactive in nature. Although CCAP KO populations exhibited circadian eclosion rhythms, the daily distribution of eclosion events (i.e., gating) was abnormal. Effects on the execution of ecdysis and its circadian regulation indicate that CCAP is a key regulator of the behavior. Nevertheless, an unexpected finding of this work is that the primary functions of CCAP as well as its importance in the control of ecdysis behaviors may change during the postembryonic development of Drosophila.  相似文献   

3.
The heartbeat of adult Drosophila melanogaster displays two cardiac phases, the anterograde and retrograde beat, which occur in cyclic alternation. Previous work demonstrated that the abdominal heart becomes segmentally innervated during metamorphosis by peripheral neurons that express crustacean cardioactive peptide (CCAP). CCAP has a cardioacceleratory effect when it is applied in vitro. The role of CCAP in adult cardiac function was studied in intact adult flies using targeted cell ablation and RNA interference (RNAi). Optical detection of heart activity showed that targeted ablation of CCAP neurons selectively altered the anterograde beat, without apparently altering the cyclic cardiac reversal. Normal development of the abdominal heart and of the remainder of cardiac innervation in flies lacking CCAP neurons was confirmed by immunocytochemistry. Thus, in addition to its important role in ecdysis behavior (the behavior used by insects to shed the remains of the old cuticle at the end of the molt), CCAP may control the level of activity of the anterograde cardiac pacemaker in the adult fly. Expression of double stranded CCAP RNA in the CCAP neurons (targeted CCAP RNAi) caused a significant reduction in CCAP expression. However, this reduction was not sufficient to compromise CCAP's function in ecdysis behavior and heartbeat regulation.  相似文献   

4.
Retrograde BMP signaling in neurons plays conserved roles in synaptic efficacy and subtype-specific gene expression. However, a role for retrograde BMP signaling in the behavioral output of neuronal networks has not been established. Insect development proceeds through a series of stages punctuated by ecdysis, a complex patterned behavior coordinated by a dedicated neuronal network. In Drosophila, larval ecdysis sheds the old cuticle between larval stages, and pupal ecdysis everts the head and appendages to their adult external position during metamorphosis. Here, we found that mutants of the type II BMP receptor wit exhibited a defect in the timing of larval ecdysis and in the completion of pupal ecdysis. These phenotypes largely recapitulate those previously observed upon ablation of CCAP neurons, an integral subset of the ecdysis neuronal network. Here, we establish that retrograde BMP signaling in only the efferent subset of CCAP neurons (CCAP-ENs) is required to cell-autonomously upregulate expression of the peptide hormones CCAP, Mip and Bursicon β. In wit mutants, restoration of wit exclusively in CCAP neurons significantly rescued peptide hormone expression and ecdysis phenotypes. Moreover, combinatorial restoration of peptide hormone expression in CCAP neurons in wit mutants also significantly rescued wit ecdysis phenotypes. Collectively, our data demonstrate a novel role for retrograde BMP signaling in maintaining the behavioral output of a neuronal network and uncover the underlying cellular and gene regulatory substrates.  相似文献   

5.
6.
The eclosion of the adult Manduca sexta moth is followed by a wave of cell death that eliminates up to 50% of the neurons of the central nervous system within the first few days of imaginal life. While the identity of some of the dying motoneurons has been established, that of most doomed neurons is unknown. Here, we show that the dying cells include peptidergic neurons involved in the control of ecdysis behavior. These cells belong to a small population of 50 neurons that express crustacean cardioactive peptide (CCAP), a potent regulator of the ecdysis motor program, and show increases in cyclic 3′,5′-guanosine monophosphate at each ecdysis. First, we describe new markers for these neurons and show that they are expressed in these CCAP-immunoreactive neurons in a complex temporal pattern during development. We then show that these neurons die within 36 h after adult eclosion, the last performance of ecdysis behavior in the life of the animal, via the active, genetically determined process of programmed cell death. The death of these neurons supports the hypothesis that outmoded or unused neurons are actively eliminated. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 265–280, 1998  相似文献   

7.
Neuromodulators, such as neuropeptides, can regulate and reconfigure neural circuits to alter their output, affecting in this way animal physiology and behavior. The interplay between the activity of neuronal circuits, their modulation by neuropeptides, and the resulting behavior, is still poorly understood. Here, we present a quantitative framework to study the relationships between the temporal pattern of activity of peptidergic neurons and of motoneurons during Drosophila ecdysis behavior, a highly stereotyped motor sequence that is critical for insect growth. We analyzed, in the time and frequency domains, simultaneous intracellular calcium recordings of peptidergic CCAP (crustacean cardioactive peptide) neurons and motoneurons obtained from isolated central nervous systems throughout fictive ecdysis behavior induced ex vivo by Ecdysis triggering hormone. We found that the activity of both neuronal populations is tightly coupled in a cross-frequency manner, suggesting that CCAP neurons modulate the frequency of motoneuron firing. To explore this idea further, we used a probabilistic logistic model to show that calcium dynamics in CCAP neurons can predict the oscillation of motoneurons, both in a simple model and in a conductance-based model capable of simulating many features of the observed neural dynamics. Finally, we developed an algorithm to quantify the motor behavior observed in videos of pupal ecdysis, and compared their features to the patterns of neuronal calcium activity recorded ex vivo. We found that the motor activity of the intact animal is more regular than the motoneuronal activity recorded from ex vivo preparations during fictive ecdysis behavior; the analysis of the patterns of movement also allowed us to identify a new post-ecdysis phase.  相似文献   

8.
BACKGROUND: At the end of each molt, insects shed their old cuticle by performing the ecdysis sequence, an innate behavior consisting of three steps: pre-ecdysis, ecdysis, and postecdysis. Blood-borne ecdysis-triggering hormone (ETH) activates the behavioral sequence through direct actions on the central nervous system. RESULTS: To elucidate neural substrates underlying the ecdysis sequence, we identified neurons expressing ETH receptors (ETHRs) in Drosophila. Distinct ensembles of ETHR neurons express numerous neuropeptides including kinin, FMRFamides, eclosion hormone (EH), crustacean cardioactive peptide (CCAP), myoinhibitory peptides (MIP), and bursicon. Real-time imaging of intracellular calcium dynamics revealed sequential activation of these ensembles after ETH action. Specifically, FMRFamide neurons are activated during pre-ecdysis; EH, CCAP, and CCAP/MIP neurons are active prior to and during ecdysis; and activity of CCAP/MIP/bursicon neurons coincides with postecdysis. Targeted ablation of specific ETHR ensembles produces behavioral deficits consistent with their proposed roles in the behavioral sequence. CONCLUSIONS: Our findings offer novel insights into how a command chemical orchestrates an innate behavior by stepwise recruitment of central peptidergic ensembles.  相似文献   

9.
10.
11.
12.
Enzymatic epoxide hydration of the cyclodiene insecticide HEOM by the southern armyworm was investigated throughout the late larval, pupal and adult stages of development. Epoxide hydrase activity reaches a maximum in the period between ecdysis of the last instar and the larval-pupal ecdysis, decreases during pupal life and becomes essentially zero following adult emergence. Comparison was made with variations occurring in juvenile hormone hydrase activity, and the significance of these age-dependent changes in relation to regulation of insect development are discussed.  相似文献   

13.
Previous work has shown that a transgene consisting of a fusion between the rat atrial natriuretic peptide and a green fluorescent protein reporter (ANF‐gfp) is processed, localized, and released, as would be an endogenous neuropeptide when it is expressed in the nervous system of Drosophila melanogaster using the GAL4/UAS expression system. Here we have tested the utility of this targetable transgene for detecting neuropeptide release following the execution of a peptide‐controlled behavior. For the behavior we used ecdysis, the behavior expressed by insects to shed their old cuticle at the end of the molt. We found that larval ecdysis was accompanied by a readily detectable reduction in gfp fluorescence from relevant secretory cells in the periphery and peptidergic neurons in the CNS. We also found that expression of the ANF‐gfp products did not have detrimental effects on larval ecdysis or adult circadian rhythmicity, when the transgene was expressed in peptidergic cells that are known to control these behaviors. Finally, we used a broadly expressed GAL4 driver to show that the UAS‐ANF‐gfp transgene could be used to identify axons that show a reduction in gfp fluorescence following the expression of ecdysis behavior. These findings, coupled with the availability of an increasing number of strains bearing different GAL4 drivers, suggest that this transgene will be a useful tool for identifying peptidergic neurons and secretory cells (and, eventually, their secretory product) that release their peptide content during the occurrence, in the intact animal, of a developmental, physiological or behavioral process of interest. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 181–191, 2004  相似文献   

14.
The nuclear receptor βFTZ‐F1 is expressed in most cells in a temporally specific manner, and its expression is induced immediately after decline in ecdysteroid levels. This factor plays important roles during embryogenesis, larval ecdysis, and early metamorphic stages. However, little is known about the expression pattern, regulation and function of this receptor during the pupal stage. We analyzed the expression pattern and regulation of ftz‐f1 during the pupal period, as well as the phenotypes of RNAi knockdown or mutant animals, to elucidate its function during this stage. Western blotting revealed that βFTZ‐F1 is expressed at a high level during the late pupal stage, and this expression is dependent on decreasing ecdysteroid levels. By immunohistological analysis of the late pupal stage, FTZ‐F1 was detected in the nuclei of most cells, but cytoplasmic localization was observed only in the oogonia and follicle cells of the ovary. Both the ftz‐f1 genetic mutant and temporally specific ftz‐f1 knockdown using RNAi during the pupal stage showed defects in eclosion and in the eye, the antennal segment, the wing and the leg, including bristle color and sclerosis. These results suggest that βFTZ‐F1 is expressed in most cells at the late pupal stage, under the control of ecdysteroids and plays important roles during pupal development.  相似文献   

15.
Eclosion hormone (EH) is a 7000 Da peptide that triggers ecdysis behavior in insects. In the moth, Manduca sexta, EH is found in two pairs of ventromedial (VM) cells in the brain which send their axons down the ventral nerve cord to a neurohemal site in the proctodeal nerve in the larva and pupa. During adult development, these cells send axon collaterals to the corpora cardiaca where they form a new release site used for adult eclosion. Studies of bioassayable peptide during the 5th larval instar and the larval-pupal transformation revealed that after depletion at ecdysis, the VM cells showed a transient increase in EH found in their cell bodies and axons. By contrast, their terminals in the proctodeal nerve showed a gradual accumulation of peptide followed by a release of over 90% of the stored material at pupal ecdysis. In situ hybridization analysis on whole mounts of the brains showed that the VM cells always contained EH mRNA with increased accumulation during the larval and pupal molting periods with a slight decline just before ecdysis. High levels of EH mRNA were found in brains of diapausing pupae. During the first two-thirds of adult development, mRNA accumulated to high levels, then slowly declined until ecdysis. EH mRNA levels up to 3 days after adult eclosion. At no time was EH mRNA found in the lateral neurosecretory cell cluster previously reported to produce EH for adult eclosion. 1994 John Wiley & Sons, Inc.  相似文献   

16.
Two Bombyx mori isoforms of the gene lark, which is shown to play an important role in Drosophila circadian rhythms, were identified and named Bmlark-PA and Bmlark-PB, respectively. Bmlark-PA consists of 5 exons and encodes a protein of 343 amino acid residues which contains 3 functional domains: two RRM (RNA recognization motif) domains and an RTZF (retroviral-type zinc finger) and shares 72% identity with the Drosophila gene lark at the amino acid level. Bmlark-PB lacks the sequence between 118 and 791 nt of Bmlark-PA and codes for a protein of 68 amino acid residues, which contains no distinct functional domains. Alignments of the cDNAs of Bmlark to the genomic draft sequence of B. mori showed that the gene Bmlark had a single copy in the genome, suggesting that an alternative splicing mechanism occurs in the gene Bmlark. RT-PCR analysis indicated that Bmlark-PA was expressed only in late pupae and adult but Bmlark-PB was broadly expressed in many tissues and throughout the developmental stages from embryo to adult.  相似文献   

17.
The signal transduction of the peptide, eclosion hormone, in the silkworm Bombyx mori appears to be mediated via the second messenger cyclic GMP throughout their life cycle. Injection of 8-bromo-cGMP induced the ecdysis behavior in pharate adults with similar latency to eclosion hormone-induced ecdysis; the moulting occurred 50-70 min after the injection. The potency of 8Br-cGMP was 10(2) fold higher than that of cGMP and the efficacy was increased by the co-injection of the phosphodiesterase inhibitor IBMX. On the other hand, in the silkworm pupal ecdysis the eclosion hormone and also 8Br-cGMP induced the moulting behavior in a dose-dependent manner. The adult development of the ability to respond to 8Br-cGMP took place concomitantly with the response to the eclosion hormone. Both the developmental time courses were shifted by a shift of light and dark cycles. Accordingly, the sensitivities to the peptide and cyclic nucleotide developed correspondently under the light and dark circadian rhythm. Thus throughout the silkworm life cycle, eclosion hormone is effective to trigger the ecdysis behavior and cGMP plays a crucial role as the second messenger in the eclosion hormone-mediated signal transduction.  相似文献   

18.
Sensory neurons in the antenna of the moth, Manduca sexta, arise and differentiate during the 18 days of metamorphosis from pupa to adult, sending axons to the brain. To assess the trophic dependence of developing antennal neurons on their targets, we studied antennae from surgically debrained animals. If the brain is removed 1 to 45 hr after pupal ecdysis (before and during the period when antennal neurons arise by cell divisions), adult development can be triggered by injection of β-ecdysone; if the brain is removed 50 to 60 hr after pupal ecdysis (before antennal axons contact the brain), metamorphosis proceeds spontaneously. Neurons proliferate normally and differentiate extensively in the antennae of debrained animals. They acquire a characteristic size and shape, elaborate axons and dendrites, migrate to appropriate positions in the sensilla, accumulate components of a neurotransmitter system (acetylcholine, choline acetyltransferase, and acetylcholinesterase), and generate electrical responses to olfactory and mechanical stimuli. Antennal sensory neurons thus differ from a variety of vertebrate neurons, which fail to mature when deprived of their synaptic targets.  相似文献   

19.
Woodruff EA  Broadie K  Honegger HW 《Peptides》2008,29(12):2276-2280
Numerous neurosecretory cells are known to secrete more than one peptide, in both vertebrates and invertebrates. These co-expressed neuropeptides often originate from differential cleavage of a single large precursor, and are then usually sorted in the regulated pathway into different secretory vesicle classes to allow separable release dynamics. Here, we use immuno-gold electron microscopy to show that two very different neuropeptides (the nonapeptide crustacean cardioactive peptide (CCAP) and the 30 kDa heterodimeric bursicon) are co-packaged within the same dense core vesicles in neurosecretory neurons in the abdominal ganglia of Periplaneta americana. We suggest that this co-packaging serves a physiological function in which CCAP accelerates the distribution of bursicon to the epidermis after ecdysis to regulate sclerotization of the newly formed cuticle.  相似文献   

20.
Ecdysis behavior in arthropods is driven by complex interactions among multiple neuropeptide signaling systems. To understand the roles of neuropeptides and their receptors in the red flour beetle, Tribolium castaneum, we performed systemic RNA interference (RNAi) experiments utilizing post-embryonic injections of double-stranded (ds) RNAs corresponding to ten gene products representing four different peptide signaling pathways: eclosion hormone (EH), ecdysis triggering hormone (ETH), crustacean cardioactive peptide (CCAP) and bursicon. Behavioral deficiencies and developmental arrests occurred as follows: RNAi of (1) eh or eth disrupted preecdysis behavior and prevented subsequent ecdysis behavior; (2) ccap interrupted ecdysis behavior; and (3) bursicon subunits resulted in wrinkled elytra due to incomplete wing expansion, but there was no effect on cuticle tanning or viability. RNAi of genes encoding receptors for those peptides produced phenocopies comparable to those of their respective cognate neuropeptides, except in those cases where more than one receptor was identified. The phenotypes resulting from neuropeptide RNAi in Tribolium differ substantially from phenotypes of the respective Drosophila mutants. Results from this study suggest that the functions of neuropeptidergic systems that drive innate ecdysis behavior have undergone significant changes during the evolution of arthropods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号