首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bolen DW  Yang M 《Biochemistry》2000,39(49):15208-15216
The DeltaG degrees (N)(-)(D) value obtained from extrapolation to zero denaturant concentration by the linear extrapolation method (LEM) is commonly interpreted to represent the Gibbs energy difference between native (N) and denatured (D) ensembles at the limit of zero denaturant concentration. For DeltaG degrees (N)(-)(D) to be interpreted solely in terms of N and D, as is common practice, it must be shown to be independent of denaturant concentration. Because DeltaG degrees (N)(-)(D) is often observed to be dependent on the nature of the denaturant, it is necessary to determine the circumstances under which DeltaG degrees (N)(-)(D) can be interpreted as a property solely of the protein. Here, we use proton inventory, a thermodynamic property of both the native and denatured ensembles, to monitor the thermodynamic character of denaturant-dependent aspects of N and D ensembles and the N right arrow over left arrow D transition. Use of a thermodynamic rather than a spectral parameter to monitor denaturation provides insight into the manner in which denaturant affects the meaning of DeltaG degrees (N)(-)(D) and the nature of the N right arrow over left arrow D transition. Three classes of proteins are defined in terms of the thermodynamic behaviors of their N right arrow over left arrow D transition and N and D ensembles. With guanidine hydrochloride as a denaturant, the classification of protein denaturations by these procedures determines when the LEM gives readily interpretable DeltaG degrees (N)(-)(D) values with this denaturant and when it does not.  相似文献   

3.
M M Santoro  D W Bolen 《Biochemistry》1992,31(20):4901-4907
Guanidine hydrochloride (GdnHCl) and thermally induced unfolding measurements on the oxidized form of Escherichia coli thioredoxin at pH 7 were combined for the purpose of assessing the functional dependence of unfolding free energy changes on denaturant concentration over an extended GdnHCl concentration range. Conventional analysis of GdnHCl unfolding exhibits a linear plot of unfolding delta G vs [GdnHCl] in the transition zone. In order to extend unfolding delta G measurements outside of that narrow concentration range, thermal unfolding measurements were performed using differential scanning calorimetry (DSC) in the presence of low to moderate concentrations of GdnHCl. The unfolding delta G values from the DSC measurements were corrected to 25 degrees C using the Gibbs-Helmholtz equation and mapped onto the delta G vs [GdnHCl] plot. The dependence of unfolding delta G on [GdnHCl] was found to be linear over the full denaturant concentration range, provided that the chloride ion concentration was kept at a threshold of greater than or equal to 1.5 M. In the DSC experiments performed in the presence of GdnHCl, chloride concentrations were maintained at 1.5 M by addition of appropriate amounts of NaCl. The linear extrapolation method (LEM) gives an unfolding free energy change in the absence of denaturant (delta G degrees N-U) in excellent agreement with the delta G determined by DSC measurement in 1.5 M NaCl. The various methods give a consensus unfolding delta G value of 8.0 kcal/mol at 25 degrees C in the absence of denaturant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
It is generally believed that unfolded or denatured proteins show random-coil statistics and hence their radius of gyration simply scales with solvent quality (or concentration of denaturant). Indeed, nearly all proteins studied thus far have been shown to undergo a gradual and continuous expansion with increasing concentration of denaturant. Here, we use fluorescence correlation spectroscopy (FCS) to show that while protein A, a multi-domain and predominantly helical protein, expands gradually and continuously with increasing concentration of guanidine hydrochloride (GdnHCl), the F(ab′)2 fragment of goat anti-rabbit antibody IgG, a multi-subunit all β-sheet protein does not show such continuous expansion behavior. Instead, it first expands and then contracts with increasing concentration of GdnHCl. Even more striking is the fact that the hydrodynamic radius of the most expanded F(ab′)2 ensemble, observed at 3-4 M GdnHCl, is ∼ 3.6 times that of the native protein. Further FCS measurements involving urea and NaCl show that the unusually expanded F(ab′)2 conformations might be due to electrostatic repulsions. Taken together, these results suggest that specific interactions need to be considered while assessing the conformational and statistical properties of unfolded proteins, particularly under conditions of low solvent quality.  相似文献   

5.
A novel liquid chromatographic method was developed for enantiomeric separation of lorcaserin hydrochloride on Chiralpak IA column containing chiral stationary phase immobilized with amylose tris (3.5‐dimethylphenylcarbamate) as chiral selector. Baseline separation with resolution greater than 4 was achieved using mobile phase containing mixture of n‐hexane/ethanol/methanol/diethylamine (95:2.5:2.5:0.1, v/v/v/v) at a flow rate of 1.2 mL/min. The limit of detection and limit of quantification of the S‐enantiomer were found to be 0.45 and 1.5 μg/mL, respectively; the developed method was validated as per ICH guideline. The influence of column oven temperatures studied in the range of 20°C to 50°C on separation was studied; from this, retention, separation, and resolution were investigated. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were evaluated from van't Hoff plots,(Ink′ versus 1/T) and used to explain the strength of interaction between enantiomers and immobilized amylose–based chiral stationary phase  相似文献   

6.
Cofactor and tryptophan accessibility of the 65-kDa form of rat brain glutamate decarboxylase (GAD) was investigated by fluorescence quenching measurements using acrylamide, I-, and Cs+ as the quenchers. Trp residues were partially exposed to solvent. I- was less able and Cs+ was more able to quench the fluorescence of Trp residues in the holoenzyme of GAD (holoGAD) than the apoenzyme (apoGAD). The fraction of exposed Trp residues were in the range of 30-49%. In contrast, pyridoxal-P bound to the active site of GAD was exposed to solvent. I- was more able and Cs+ was less able to quench the fluorescence of pyridoxal-P in holoGAD. The cofactor was present in a positively charged microenvironment, making it accessible for interactions with anions. A difference in the exposure of Trp residues and pyridoxal-P to these charged quenchers suggested that the exposed Trp residues were essentially located outside of the active site. Changes in the accessibility of Trp residues upon pyridoxal-P binding strongly supported a significant conformational change in GAD. Fluorescence intensity measurements were also carried out to investigate the unfolding of GAD using guanidine hydrochloride (GdnHCl) as the denaturant. At 0.8-1.5 M GdnHCl, an intermediate step was observed during the unfolding of GAD from the native to the denatured state, and was not found during the refolding of GAD from the denatured to native state, indicating that this intermediate step was not a reversible process. However, at >1.5 M GdnHCl for holoGAD and >2.0 M GdnHCl for apoGAD, the transition leading to the denatured state was reversible. It was suggested that the intermediate step involved the dissociation of native dimer of GAD into monomers and the change in the secondary structure of the protein. Circular dichroism revealed a decrease in the alpha-helix content of GAD from 36 to 28%. The unfolding pattern suggested that GAD may consist of at least two unfolding domains. Unfolding of the lower GdnHCl-resisting domain occurred at a similar concentration of denaturant for apoGAD and holoGAD, while unfolding of the higher GdnHCl-resisting domain occurred at a higher concentration of GdnHCl for apoGAD than holoGAD.  相似文献   

7.
The activity and the conformational changes of methanol dehydrogenase (MDH), a quinoprotein containing pyrrolo-quinoline quinone as its prosthetic group, have been studied during denaturation in guanidine hydrochloride (GdnHCl) and urea. The unfolding of MDH was followed using the steady-state and time resolved fluorescence methods. Increasing the denaturant concentration in the denatured system significantly enhanced the inactivation and unfolding of MDH. The enzyme was completely inactivated at 1 M GdnHCl or 6 M urea. The fluorescence emission maximum of the native enzyme was at 332 nm. With increasing denaturant concentrations, the fluorescence emission maximum red-shifted in magnitude to a maximum value (355 nm) at 5 M GdnHCl or 8 M urea. Comparison of inactivation and conformational changes during denaturation showed that in general accord with the suggestion made previously by Tsou, the active sites of MDH are situated in a region more flexible than the molecule as a whole.  相似文献   

8.
Khan MK  Miller AL  Bowler BE 《Biochemistry》2012,51(17):3586-3595
We use a host-guest approach to evaluate the effect of Trp guest residues relative to Ala on the kinetics and thermodynamics of formation of His-heme loops in the denatured state of iso-1-cytochrome c at 1.5, 3.0, and 6.0 M guanidine hydrochloride (GdnHCl). Trp guest residues are inserted into an alanine-rich segment placed after a unique His near the N-terminus of iso-1-cytochrome c. Trp guest residues are either 4 or 10 residues from the His end of the 28-residue loop. We find the guest Trp stabilizes the His-heme loop at all GdnHCl concentrations when it is the 4th, but not the 10th, residue from the His end of the loop. Thus, residues near loop ends are most important in developing topological constraints in the denatured state that affect protein folding. In 1.5 M GdnHCl, the loop stabilization is ~0.7 kcal/mol, providing a thermodynamic rationale for the observation that Trp often mediates residual structure in the denatured state. Measurement of loop breakage rate constants, k(b,His), indicates that loop stabilization by the Trp guest residues occurs completely after the transition state for loop formation in 6.0 M GdnHCl. Under poorer solvent conditions, approximately half of the stabilization of the loop develops in the transition state, consistent with contacts in the denatured state being energetically downhill and providing evidence for funneling even near the rim of the folding funnel.  相似文献   

9.
Differential scanning microcalorimetry was used to investigate the enthalpy (ΔHd) and the temperature (td) of thermal denaturation of normal and deuterated phycocyanins isolated from two blue-green algae, Plectonema calothricoides and Phormidium luridum. Values of td in deuterated proteins are about 5°C lower than those in normal proteins. The magnitudes of ΔHd in deuterated proteins are 18–36% lower than in normal proteins. The heatcapacity change (ΔCp) in protein unfolding is essentially the same (2 kcal/mol/K) for deuterated and normal proteins within the experimental error. At close to physiological temperature (27°C), the differences in thermodynamic functions in the native and denatured states are much higher in normal proteins than in deuterated proteins. CD was employed to evaluate both the secondary structures and urea denaturation of these two types of proteins. In P. luridum, deuterated protein is about 8% higher in α-helix content; in P. calothricoides it is not significantly higher. Deuterated proteins are less resistant to the denaturant urea than are normal proteins: the denaturant concentration at the midpoint of the denaturation curve is 0.6–1.2 mol/L lower in the deuterated proteins. The apparent free energies of unfolding of deuterated proteins at zero denaturant concentration are 1.1–1.5 kcal/mol less than for normal proteins.  相似文献   

10.
The denatured states of proteins have always attracted our attention due to the fact that the denatured state is the only experimentally achievable state of a protein, which can be taken as initial reference state for considering the in vitro folding and defining the native protein stability. It is known that heat and guanidinium chloride (GdmCl) give structurally different states of RNase-A, lysozyme, α-chymotrypsinogen A and α-lactalbumin. On the contrary, differential scanning calorimetric (DSC) and isothermal titration calorimetric measurements, reported in the literature, led to the conclusion that heat denatured and GdmCl denatured states are thermodynamically and structurally identical. In order to resolve this controversy, we have measured changes in the far-UV CD (circular dichroism) of these heat-denatured proteins on the addition of different concentrations of GdmCl. The observed sigmoidal curve of each protein was analyzed for Gibbs free energy change in the absence of the denaturant (ΔG 0 X→D) associated with the process heat denatured (X) state ↔ GdmCl denatured (D) state. To confirm that this thermodynamic property represents the property of the protein alone and is not a manifestation of salvation effect, we measured urea-induced denaturation curves of these heat denatured proteins under the same experimental condition in which GdmCl-induced denaturation was carried out. In this paper we report that (a) heat denatured proteins contain secondary structure, and GdmCl (or urea) induces a cooperative transition between X and D states, (b) for each protein at a given pH and temperature, thermodynamic cycle connects quantities, ΔG 0 N→X (native (N) state ↔ X state), ΔG 0 X→D and ΔG 0 N→D (N state ↔ D state), and (c) there is not a good enthalpy difference between X and D states, which is the reason for the absence of endothermic peak in DSC scan for the transition, X state ↔ D state.  相似文献   

11.
Retention of total activity of the subtilisin-like serine protease from Beauveria sp. MTCC 5184 (Bprot) in the vicinity of (1) 3 M GdnHCl for 12 h, (2) 50 % methanol and dimethyl sulfoxide each for 24 h, and (3) proteolytic enzymes (trypsin, chymotrypsin, and proteinase K) for 48 h led to expect the enzyme to be a kinetically stable protein. Also, the structure of the protein was stable at pH 2.0. Biophysical characterization and conformational transitions were monitored using steady-state and time-resolved fluorescence, FTIR, and CD spectroscopy. Single tryptophan in the protein exists as two conformers, in hydrophobic and polar environment. The secondary structure of Bprot was stable in 3 M GdnHCl as seen in far-UV CD spectra. The active fraction of Bprot obtained from size-exclusion chromatography in the presence of GdnHCl (1.0–3.0 M) eluted at reduced retention time. The peak area of inactive or denatured protein with the same retention time as that of native protein increased with increasing concentration of denaturant (1.0–4.0 M GdnHCl). However, the kinetics of GdnHCl-induced unfolding as studied from intrinsic fluorescence revealed k unf of native protein to be 5.407 × 10?5 s?1 and a half-life of 3.56 h. The enzyme is thermodynamically stable in spite of being resistant to the denaturant, which could be due to the effect of GdnHCl imparting rigidity to the active fraction and simultaneously unfolding the partially unfolded protein that exists in equilibrium with the folded active protein. Thermal and pH denaturation of Bprot exhibited interesting structural transitions.  相似文献   

12.
The cyanobacterium Arthrospira (Spirulina) platensis was used to study the process of silver biosorption. Effects of various parameters such as contact time, dosage of biosorbent, initial pH, temperature, and initial concentration of Ag(I) were investigated for a batch adsorption system. The optimal biosorption conditions were determined as pH 5.0, biosorbent dosage of 0.4 g, and initial silver concentration of 30 mg/L. Equilibrium adsorption data were analyzed by the Langmuir and Freundlich models – however, the Freundlich model provided a better fit to the experimental data. The kinetic data fit the pseudo-second-order model well, with a correlation coefficient of 0.99. The analysis of thermodynamic parameters (ΔG°, ΔH° and ΔS°) revealed that the adsorption process of silver ion by spirulina biomass was exothermic and spontaneous (ΔG° < 0), and exothermic (ΔH° < 0) process. The biosorption capacity of biomass A. platensis serves as a basis for the development of green technology for environmental remediation.  相似文献   

13.
《Life sciences》1995,57(12):A141-A146
The thermodynamic parameters ΔG° , ΔH° and Δs° of the binding equilibrium of serotonin to 5-HT1A, 5-HT2A and 5-HT3 rat-brain membrane receptors have been determined by means of affinity constant measurements at six temperatures in the range 0 –35 ° C and van't Hoff plots. At variance with 5-HT1A and 5-HT3, the binding at the 5-HT2A receptors is strongly endothermic and entropy-driven. Comparison with the results obtained by other authors on 5-HT2A receptors in rats and humans suggests that the observed differences can be explained by a single amino acid difference in the receptor sequence between these two species.  相似文献   

14.
Osmolyte molecules such as betaine and trehalose are protein stabilizers while l-arginine (Arg) and guanidine hydrochloride (GdnHCl) are the most widely used aggregation suppressor in protein refolding. We have herein studied the effects of the osmolyte molecules and l-arginine together with GdnHCl (0–6 mol/L) on the intermolecular interaction of native and denatured lysozyme by self-interaction chromatography. The self-interaction is characterized in terms of the osmotic second virial coefficient (B) of the protein, the increase of which represents the decrease of intermolecular attraction of the protein. It is found that the effect of Arg on the self-interaction of lysozyme is similar with GdnHCl, but its competence is much weaker than the denaturant. At higher GdnHCl concentrations (>0.5 mol/L), Arg can be used to suppress the self-association of lysozyme. In contrast to Arg, B increases with increasing betaine or trehalose concentration at the GdnHCl concentration range studied. The results indicate the cooperativity of each osmolyte with GdnHCl, and the different mechanisms of their effects from Arg on the B values. The work confirms that the osmolytes are not only protein stabilizers, but also protein aggregation suppressors for both native and denatured protein molecules.  相似文献   

15.
It is generally held that random-coil polypeptide chains undergo a barrier-less continuous collapse when the solvent conditions are changed to favor the fully folded native conformation. We test this hypothesis by probing intramolecular distance distributions during folding in one of the paradigms of folding reactions, that of cytochrome c. The Trp59-to-heme distance was probed by time-resolved Förster resonance energy transfer in the microsecond time range of refolding. Contrary to expectation, a state with a Trp59–heme distance close to that of the guanidinium hydrochloride (GdnHCl) denatured state is present after ~ 27 μs of folding. A concomitant decrease in the population of this state and an increase in the population of a compact high-FRET (Förster resonance energy transfer) state (efficiency > 90%) show that the collapse is barrier limited. Small-angle X-ray scattering (SAXS) measurements over a similar time range show that the radius of gyration under native favoring conditions is comparable to that of the GdnHCl denatured unfolded state. An independent comprehensive global thermodynamic analysis reveals that marginally stable partially folded structures are also present in the nominally unfolded GdnHCl denatured state. These observations suggest that specifically collapsed intermediate structures with low stability in rapid equilibrium with the unfolded state may contribute to the apparent chain contraction observed in previous fluorescence studies using steady-state detection. In the absence of significant dynamic averaging of marginally stable partially folded states and with the use of probes sensitive to distance distributions, barrier-limited chain contraction is observed upon transfer of the GdnHCl denatured state ensemble to native-like conditions.  相似文献   

16.
Phenolic compounds have increasingly attracted global concerns in recent years due to their strong bioaccumulation and potential toxicity. In this study, the adsorption of 2, 4-Dichlorophenol (2, 4-DCP), 2, 4-Dinitrophenol (2, 4-DNP) and 2, 4-Dimethyphenol (2, 4-DMP) on sediment at different temperatures was studied. Adsorption isotherms fitted well to the Freundlich model and the adsorption capacity was increased when the temperature increased from 5°C to 25°C. It was found that the adsorption process could be modeled well using pseudo-second-order kinetic equation. The thermodynamic parameter ΔG° for 2, 4-DCP, 2, 4-DNP and 2, 4-DMP varied between ?8.82 and ?13.68, ?4.9 and ?8.05, and ?7.52 and ?10.55 kJ/mol, respectively, with ΔH° (kJ/mol) and ΔS°(J/(mol·K)) measuring 55.397 and 0.2263, 40.121 and 0.1585, and 38.012 and 0.16, respectively. The calculated thermodynamic parameters suggested that adsorption of the three selected phenolic compounds was a spontaneous (ΔG°< 0), endothermic (ΔH°> 0), and entropy-driven reaction (ΔS° > 0). The thermodynamic data also suggested that the three selected phenolic compounds to sediment were closed to chemisorption because ΔH° was around 40.  相似文献   

17.
The binding interaction between two dicationic styrylimidazo[1,2‐a]pyridinium dyes and human serum albumin (HSA) was investigated at physiological conditions using fluorescence, UV–vis absorption, and circular dichroism (CD) spectroscopies. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by these dyes was static. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) indicated that hydrogen bonding and van der Waals forces played a major role in the formation of the dye–HSA complex. Binding distances (r) between dyes and HSA were calculated according to Förster's non‐radiative energy transfer theory. Studies of conformational changes of HSA using CD measurements indicate that the α‐helical content of the protein decreased upon binding of the dyes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The pH dependence of stability of staphylococcal nuclease was studied with two independent equilibrium thermodynamic approaches. First, by measurement of stability in the pH range 9 to 3.5 by fluorescence-monitored denaturation with urea (Delta), GdnHCl (Delta), and heat (Delta). Second, by numerical integration of H(+) titration curves (Delta) measured potentiometrically under native (100 mM KCl) and unfolding (6.0 M GdnHCl) conditions. The pH dependence of stability described by Delta, Delta, and Delta was comparable but significantly different from the one described by Delta. The decrease in Delta between pH 9 and pH 4 was 4 kcal/mol greater than the decrease in Delta, Delta, and Delta in the same pH range. In 6 M GdnHCl, all the ionizable groups titrated with the pK(a) values of model compounds. Therefore, Delta represents the free energy difference between the native state (N) and an ensemble of unstructured, or expanded, and highly screened conformations. In contrast, the shallower pH dependence of stability described by Delta and by Delta between pH 9 and 5 was consistent with the titration of histidines with depressed, nativelike pK(a) values in the denatured state (D). These depressed pK(a) values likely reflect long-range electrostatic interactions with the other 29 basic groups and are a consequence of the compact character of the D state. The steep change in Delta and Delta at pH < 5 suggests that near pH 5 the structural and thermodynamic character of the D state shifts toward a state in which acidic residues titrate with normal pK(a) values, presumably because the electrostatic interactions with basic residues are lost, maybe as a consequence of an expansion.  相似文献   

19.
Unfolding and refolding studies on porcine odorant binding protein (pOBP) have been performed at pH 7 in the presence of guanidinium hydrochloride (GdnHCl). Unfolding, monitored by following changes of protein fluorescence and circular dichroism (CD), was found to be a reversible process, in terms of recovered structure and function. The equilibrium transition data were fitted by a simple two-state sigmoidal function of denaturant concentration and the thermodynamic folding parameters, derived from the two techniques, were very similar (average values: C(1/2) approximately 2.4 M, m approximately 2 kcal mol(-1) M(-1), DeltaG(unf,w)(0) approximately 4.7 kcal mol(-1)). The transition was independent of protein concentration, indicating that only monomeric species are involved. Only a minor protective effect by the fluorescent ligand 1-amino-anthracene (AMA) against protein unfolding was detected, whereas dihydromyrcenol (DHM) stabilised the protein to a larger extent (DeltaC(1/2) approximately 0.5 M). Refolding was complete, when the protein, denatured with GdnHCl, was diluted with buffer. On the other hand, refolding by dialysis was largely prevented by concomitant aggregation. The present results on pOBP are compared with those on bovine OBP (bOBP) [Biochim. Biophys. Acta 1599 (2002) 90], where subunit folding is accompanied by domain swapping. We finally suggest that the generally observed two-state folding of many lipocalins is probably favoured by their beta-barrel topology.  相似文献   

20.
Moreau VH  Rietveld AW  Ferreira ST 《Biochemistry》2003,42(50):14831-14837
Subunit dissociation of dimeric rabbit muscle triosephosphate isomerase (TIM) by hydrostatic pressure has previously been shown not to follow the expected dependence on protein concentration [Rietveld and Ferreira (1996) Biochemistry 35, 7743-7751]. This anomalous behavior was attributed to persistent conformational heterogeneity (i.e., the coexistence of long-lived conformational isomers) in the ensemble of TIM dimers. Here, we initially show that subunit dissociation/unfolding of TIM by guanidine hydrochloride (GdnHCl) also exhibits an anomalous dependence on protein concentration. Dissociation/unfolding of TIM by GdnHCl was investigated by intrinsic fluorescence and circular dichroism spectroscopies and was found to be a highly cooperative transition in which the tertiary and secondary structures of the protein were concomitantly lost. A procedure based on size-exclusion chromatography in the presence of intermediate (0.6 M) GdnHCl concentrations was developed to isolate two conformational isomers of TIM that exhibit significantly different stabilities and kinetics of unfolding by GdnHCl. Complete unfolding of the two isolated conformers at a high GdnHCl concentration (1.5 M), followed by refolding by removal of the denaturant, completely abolished the differences in their unfolding kinetics. These results indicate that such differences stem from conformational heterogeneity of TIM and are not related to any chemical modification of the protein. Furthermore, they add support to the notion that long-lived conformational isomers of TIM coexist in solution and provide a basis for the interpretation of the persistent heterogeneity of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号