首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enteromorpha compressa is the dominant species in coastal areas of northern Chile receiving copper mine wastes. Copper remains as the main heavy metal in these coastal waters and it is accumulated in E. compressa growing at the impacted sites. Algae from these sites showed higher levels of lipoperoxides than from non‐impacted sites, which suggests the occurrence of cellular damage resulting from oxidative stress. The strong activation of ascorbate peroxidase detected in this study probably occurs in order to buffer this oxidative stress. Unexpectedly, the activity of glutathione reductase, normally coupled to ascorbate peroxidase activity, was not affected by the chronic exposure to the mine wastes. Moreover, catalase, dehydroascorbate reductase and glutathione peroxidase, commonly reported to buffer oxidative stress in plants and algae, were not detected in E. compressa from any of the studied sites. Levels of total glutathione and phenolic compounds decreased in algae from mine‐impacted sites. In contrast, high levels of dehydroascorbate were found in algae from impacted sites, whereas ascorbate remained unchanged. Therefore, it is suggested that E. compressa tolerates a copper‐enriched environment, and the accompanying oxidative stress, through the accumulation of copper, activation of ascorbate peroxidase, synthesis of ascorbate (accumulated as dehydroascorbate) and consumption of glutathione and water‐soluble phenolic compounds.  相似文献   

2.
Heavy metals impact on the cytoplasmic function in a number of different ways, principally by their binding to protein sulflhdryl groups, by producing a deficiency of essential ions and, eventually, by substituting the essemial ions. Other modes of toxicity are possible, including disruption of cell transport processes and oxidative damage by free radicals generated by metal redox cycling. Plants have developed a variety of biochemical defense strategies to prevent heavy metal poisoning. The possible defense mechanism in plant may involve: metal binding to cell walls, avoidance of uptake these toxic metal ions, reduction of heavy metal transport across the cell membrane, active efflux, compartmentalization and metal chelation. Phytochelatins that can tightly bind and sequester metals may play an important role in the accumulation of heavy metals and preventing them from entering the cell metabolic pathway, the rates of high molecular weight (HMW) metal phytochelatin complexes (Cd-Sa-complex) formation may be an important determinant of the plant tolerance. In addition, plants possess several antioxidant defense systems to protect themselves from the oxidative stress by heavy metals.  相似文献   

3.
Sunflower mutant lines with an enhanced tolerance and metal accumulation capacity obtained by mutation breeding have been proposed for Zn, Cd and Cu removal from metal-contaminated soils in previous studies. However, soils contaminated with trace elements induce various biochemical alterations in plants leading to oxidative stress. There is a lack of knowledge concerning the metal accumulation and antioxidant responses during the growth and development of sunflowers. This study, therefore, aimed to characterise metal accumulation and possible metal detoxification mechanisms in young seedlings and adult sunflowers. Beside the inbred line, two mutant lines with an improved growth and enhanced metal uptake capacity on a metal contaminated soil were investigated in more detail.Sunflowers cultivated on a metal-contaminated soil in the greenhouse showed a decrease in shoot biomass and chlorophyll concentration in two different developmental stages. Adult sunflowers showed a lower sensitivity to metal toxicity than young seedlings, whereas mutant lines were more tolerant to metal stress than the control. Mutant lines also produced a higher amount of carotenoids on a metal-contaminated soil than on the control soil, indicating a possible protective mechanism of sunflower mutants against oxidative stress caused by Cd and excess Zn.Heavy metals primarily increased the activity of antioxidant enzymes involved in the ascorbate–glutathione cycle in sunflower leaves. Activity of dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) was strongly increased in young seedlings exposed to heavy metals. The enzyme activities were even more pronounced in mutant lines. A significantly increased ascorbate peroxidase (APOX) activity in adult sunflowers exposed to heavy metals indicated an elevated use of ascorbate after a longer exposure to metal stress.An increased antioxidant level corresponded to a high Cd and Zn accumulation in young and adult sunflowers. Metal distribution, zinc translocation in particular, from the root into the shoot tissue obviously increased during sunflower growth and ripening. Altogether, these results suggest that sunflower plants, primarily the mutant lines, possess an efficient defence mechanism against oxidative stress caused by metal toxicity. A good tolerance of sunflowers toward heavy metals coupled with an increased metal accumulation capacity might contribute to an efficient removal of heavy metals from a polluted area.  相似文献   

4.
5.
Autism and autism spectrum disorder (ASD) are developmental brain disorders with complex, obscure, and multifactorial etiology. Our recent clinical survey of patient records from ASD children under the age of 6?years and their age-matched controls revealed evidence of abnormal markers of thiol metabolism, as well as a significant alteration in deposition of several heavy metal species, particularly arsenic, mercury, copper, and iron in hair samples between the groups. Altered thiol metabolism from heavy metal toxicity may be responsible for the biochemical alterations in transketolase, and are mechanisms for oxidative stress production, dysautonomia, and abnormal thiamine homeostasis. It is unknown why the particular metals accumulate, but we suspect that children with ASD may have particular trouble excreting thiol-toxic heavy metal species, many of which exist as divalent cations. Accumulation or altered mercury clearance, as well as concomitant oxidative stress, arising from redox-active metal and arsenic toxicity, offers an intriguing component or possible mechanism for oxidative stress-mediated neurodegeneration in ASD patients. Taken together, these factors may be more important to the etiology of this symptomatically diverse disease spectrum and may offer insights into new treatment approaches and avenues of exploration for this devastating and growing disease.  相似文献   

6.
Plants experience oxidative stress upon exposure to heavy metals that leads to cellular damage. In addition, plants accumulate metal ions that disturb cellular ionic homeostasis. To minimize the detrimental effects of heavy metal exposure and their accumulation, plants have evolved detoxification mechanisms. Such mechanisms are mainly based on chelation and subcellular compartmentalization. Chelation of heavy metals is a ubiquitous detoxification strategy described in wide variety of plants. A principal class of heavy metal chelator known in plants is phytochelatins (PCs), a family of Cys-rich peptides. PCs are synthesized non-translationally from reduced glutathione (GSH) in a transpeptidation reaction catalyzed by the enzyme phytochelatin synthase (PCS). Therefore, availability of glutathione is very essential for PCs synthesis in plants at least during their exposure to heavy metals. Here, I reviewed on effect of heavy metals exposure to plants and role of GSH and PCs in heavy metal stress tolerance. Further, genetic manipulations of GSH and PCs levels that help plants to ameliorate toxic effects of heavy metals have been presented.  相似文献   

7.
植物耐重金属机理研究进展   总被引:80,自引:0,他引:80  
由于工业“三废”和机动车尾气的排放、污水灌溉及农药、除草剂和化肥的使用,严重地污染了土壤、水质和大气,其中土壤中的重金属(Hg、Cd、As、Cu和Al)污染更为严重[1]。重金属在植物根、茎、叶及籽粒中的大量累积,不仅严重地影响植物的生长和发育[1~...  相似文献   

8.
9.
We have recently identified and classified a cystathionine ??-synthase domain containing protein family in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L.). Based on the microarray and MPSS data, we have suggested their involvement in stress tolerance. In this study, we have characterized a rice protein of unknown function, OsCBSX4. This gene was found to be upregulated under high salinity, heavy metal, and oxidative stresses at seedling stage. Transgenic tobacco plants overexpressing OsCBSX4 exhibited improved tolerance toward salinity, heavy metal, and oxidative stress. This enhanced stress tolerance in transgenic plants could directly be correlated with higher accumulation of OsCBSX4 protein. Transgenic plants could grow and set seeds under continuous presence of 150?mM NaCl. The total seed yield in WT plants was reduced by 80%, while in transgenic plants, it was reduced only by 15?C17%. The transgenic plants accumulated less Na+, especially in seeds and maintained higher net photosynthesis rate and Fv/Fm than WT plants under NaCl stress. Transgenic seedlings also accumulated significantly less H2O2 as compared to WT under salinity, heavy metal, and oxidative stress. OsCBSX4 overexpressing transgenic plants exhibit higher abiotic stress tolerance than WT plants suggesting its role in abiotic stress tolerance in plants.  相似文献   

10.
Biomarkers of oxidative stress such as catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) activity, and malondialdehyde and reduced glutathione content, as well as heavy metal concentrations (HM: Pb, V, Cr, Mn, Co, Ni, Cu, Zn, and Cd), were studied in Dreissena polymorpha tissues. Mussels were collected on three sites located on the Rybinskoe Reservoir different in levels of anthropogenic pressure: the most polluted sites were 1 and 2 and site 3 was relatively clean. Mussels from sites 1 and 2 had higher concentrations of HM (Pb, V, Cr, Mn, Ni, Cu, and Mn) and their response to the pollutant action was manifested in increased processes of lipid peroxidation (LPO), the activation of CAT, and elevated level of GHS.  相似文献   

11.
Cadmium lets increase the glutathione pool in bryophytes   总被引:1,自引:0,他引:1  
Glutathione (GSH) plays an important role in protecting plants from environmental stresses like oxidative stress and xenobiotics. Glutathione-derived peptides are involved in heavy metal detoxification in plants and fungi. Terrestrial and aquatic bryophytes were investigated for their biochemical response to heavy metals. The GSH pool increased significantly in the first two days after supply of 100 μmol/L Cd(II). PCs were not detected. Cd(II) also induced the enhancement of the GSH pool in the water moss Fontinalis antipyretica. Cysteine and γ-glutamyl-cysteine also increased during Cd(II) treatment, but remained on a lower level. Uptake experiments with Cd(II) showed a fast regulation of equilibrium between the Cd(II) content of the medium and the plant surface, followed by a slow migration of Cd(II) to intracellular sites. The main storage compartment of heavy metals in Fontinalis are the vacuoles, where they are precipitated as phosphates. In the cytoplasm, the S-content increased during Cd(II) exposition. EEL-spectra indicate that in the cytoplasm, Cd(II) is chelated by SH-groups. All findings support the idea that in the investigated moss species, GSH plays an essential role in heavy metal detoxification during the transport of the metals through the cytoplasm.  相似文献   

12.
The purpose of this study was to examine the sensitivity, in a field situation, of the hyporheic fauna to pollution by heavy metals and also to test the use of oxidative stress enzymes produced by this fauna as a sensitive indicator of oxidative stress generated by chemical contamination. This was done by surveying the patterns of distribution, structure, and composition of hyporheic invertebrate communities in one of the most polluted rivers in Romania. Twelve permanent sampling stations with differing water qualities were established along a 180 km transect of the Arie? River. Data on hyporheic invertebrate abundance and richness, chemistry of the surface and hyporheic water and interstitial suspended particles were analyzed via multifactorial analyses. In the downstream, more polluted stations, epigean species were less abundant and hyporheic communities, especially macrocrustaceans and oligochetes, became dominant. The higher levels of hyporheic invertebrate biodiversity in the moderately polluted stations compared to highly polluted, and the increase of the number of some hyporheos (especially macrocrustaceans) in the moderately polluted stations, suggested that the hyporheic fauna was more tolerant of heavy metal pollution than the surface water fauna of the area. However, the different richness and abundance of hyporheic fauna in sites of similar water chemistry suggested that additional factors, such as sediment structure are shaping the spatial distribution of hyporheic fauna. Strong correlations between superoxide dismutase (SOD) activity in pooled tissues extracts and some chemical parameters suggest that oxidative stress enzymes may prove to be sensitive indicators of chemical pollution in hyporheic zones.  相似文献   

13.
14.
Aims:  To investigate the relationship between growth, heavy metal ions uptake and participation of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in the protection of Apergillus niger B 77 against cadmium stress.
Methods and Results:  The stress response of the model fungal strain, under conditions of a wide range of Cd (II) ion concentrations, was investigated by determining the biomass formation, protein biosynthesis, SOD and CAT activities and heavy metal uptake in growing cells. Exposure to heavy metal ions induced an increase in protein content, heavy metal uptake and SOD activity, and a heavy decrease in CAT activity.
Conclusion:  The results obtained indicated that the tolerance of A. niger to Cd (II) was correlated with the heavy metal uptake, reactive oxygen species generation in the cells and the efficiency of antioxidative defence system.
Significance and Impact of the Study:  Evidence is provided for the possibility that oxidative stress plays a major role in the effect of Cd (II) ions on A. niger . These data could offer useful information when creating new strategies and methodological improvements for bioremediation with the participation of fungi.  相似文献   

15.
Soybean [Glycine max (Linn.) Merrill] and mung bean [Vigna radiate (Linn.) Wilczek] plants were challenged with 5 kinds of heavy metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and mercury (Hg)] in a hydroponic system. We applied 4 different metal treatments to study the effects of heavy metals on several physiological and biochemical parameters in these species, including root length, heavy metal concentrations and allocation in different organs, superoxide dismutase, catalase, and peroxidase activities, the content of malondialdehyde (MDA), protein and chlorophyll. The data showed that the growth of the roots of soybean and mung bean was equally sensitive to external Hg concentrations. Soybean was more sensitive to external Cd concentrations, and mung bean was more sensitive to external Cr, Cu and Pb concentrations. Normal concentrations of heavy metal would not cause visible toxic symptoms, and a low level of heavy metal even slightly stimulated the growth of plants. With the rise of heavy metal concentration, heavy metal stress induces an oxidative stress response in soybean and mung bean plants, characterized by an accumulation of MDA and the alternation pattern of antioxidative enzymes. Meanwhile, the growth of plants was suppressed, the content of chlorophyll decreased and leaves showed chlorosis symptoms at high metal concentrations.  相似文献   

16.
Antioxidant role of metallothioneins: a comparative overview.   总被引:21,自引:0,他引:21  
Metallothioneins (MTs) are sulfhydryl-rich proteins binding essential and non-essential heavy metals. MTs display in vitro oxyradical scavenging capacity, suggesting that they may specifically neutralize hydroxyl radicals. Yet, this is probably an oversimplified view, as MTs represent a superfamily of widely differentiated metalloproteins. MT antioxidant properties mainly derive from sulfhydryl nucleophilicity, but also from metal complexation. Binding of transition metals displaying Fenton reactivity (Fe,Cu) can reduce oxidative stress, whereas their release exacerbates it. In vertebrates, MT gene promoters contain metal (MRE) and glucocorticoid response elements (GRE), Sp and AP sequences, but also antioxidant response elements (ARE). MT neosynthesis is induced by heavy metals, cytokines, hormones, but also by different oxidants and prooxidants. Accordingly, MT overexpression increases the resistance of tissues and cells to oxidative stress. As for invertebrates, data from the mussel show that MT can actually protect against oxidative stress, but is poorly inducible by oxidants. In yeast, there is a Cu(I)-MT that in contrast to mammalCu-MT exhibits antioxidant activity, possibly due to differences in metal binding domains. Finally, as the relevance of redox processes in cell signaling is becoming more and more evident, a search for MT effects on redox signaling could represent a turning point in the understanding of the functional role of these protein.  相似文献   

17.
Antioxidant enzyme responses of plants to heavy metal stress   总被引:5,自引:0,他引:5  
Heavy metal pollutions caused by natural processes or anthropological activities such as metal industries, mining, mineral fertilizers, pesticides and others pose serious environmental problems in present days. Evidently there is an urgent need of efficient remediation techniques that can tackle problems of such extent, especially in polluted soil and water resources. Phytoremediation is one such approach that devices effective and affordable ways of engaging suitable plants to cleanse the nature. Excessive accumulation of metal in plant tissues are known to cause oxidative stress. These, in turn differentially affect other plant processes that lead to loss of cellular homeostasis resulting in adverse affects on their growth and development apart from others. Plants have limited mechanisms of stress avoidance and require flexible means of adaptation to changing. A common feature to combat stress factors is synchronized function of antioxidant enzymes that helps alleviating cellular damage by limiting reactive oxygen species (ROS). Although, ROS are inevitable byproducts from essential aerobic metabolisms, these are needed under sub-lethal levels for normal plant growth. Understanding the interplay between oxidative stress in plants and role of antioxidant enzymes can result in developing plants that can overcome oxidative stress with the expression of antioxidant enzymes. These mechanisms have been proving to have immense potential for remediating these metals through the process of phytoremediation. The aim of this review is to assemble our current understandings of role of antioxidant enzymes of plants subjected to heavy metal stress.  相似文献   

18.
The aim of this review is to assess the mode of action and role of antioxidants as protection from heavy metal stress in roots, mycorrhizal fungi and mycorrhizae. Based on their chemical and physical properties three different molecular mechanisms of heavy metal toxicity can be distinguished: (a) production of reactive oxygen species by autoxidation and Fenton reaction; this reaction is typical for transition metals such as iron or copper, (b) blocking of essential functional groups in biomolecules, this reaction has mainly been reported for non-redox-reactive heavy metals such as cadmium and mercury, (c) displacement of essential metal ions from biomolecules; the latter reaction occurs with different kinds of heavy metals. Transition metals cause oxidative injury in plant tissue, but a literature survey did not provide evidence that this stress could be alleviated by increased levels of antioxidative systems. The reason may be that transition metals initiate hydroxyl radical production, which can not be controlled by antioxidants. Exposure of plants to non-redox reactive metals also resulted in oxidative stress as indicated by lipid peroxidation, H(2)O(2) accumulation, and an oxidative burst. Cadmium and some other metals caused a transient depletion of GSH and an inhibition of antioxidative enzymes, especially of glutathione reductase. Assessment of antioxidative capacities by metabolic modelling suggested that the reported diminution of antioxidants was sufficient to cause H(2)O(2) accumulation. The depletion of GSH is apparently a critical step in cadmium sensitivity since plants with improved capacities for GSH synthesis displayed higher Cd tolerance. Available data suggest that cadmium, when not detoxified rapidly enough, may trigger, via the disturbance of the redox control of the cell, a sequence of reactions leading to growth inhibition, stimulation of secondary metabolism, lignification, and finally cell death. This view is in contrast to the idea that cadmium results in unspecific necrosis. Plants in certain mycorrhizal associations are less sensitive to cadmium stress than non-mycorrhizal plants. Data about antioxidative systems in mycorrhizal fungi in pure culture and in symbiosis are scarce. The present results indicate that mycorrhization stimulated the phenolic defence system in the Paxillus-Pinus mycorrhizal symbiosis. Cadmium-induced changes in mycorrhizal roots were absent or smaller than those in non-mycorrhizal roots. These observations suggest that although changes in rhizospheric conditions were perceived by the root part of the symbiosis, the typical Cd-induced stress responses of phenolics were buffered. It is not known whether mycorrhization protected roots from Cd-induced injury by preventing access of cadmium to sensitive extra- or intracellular sites, or by excreted or intrinsic metal-chelators, or by other defence systems. It is possible that mycorrhizal fungi provide protection via GSH since higher concentrations of this thiol were found in pure cultures of the fungi than in bare roots. The development of stress-tolerant plant-mycorrhizal associations may be a promising new strategy for phytoremediation and soil amelioration measures.  相似文献   

19.
Exposure of plants to high-heavy metals concentration inhibits multiple metabolic processes in plants and leads to an oxidative stress commonly referred as heavy metal ion toxicity. Chlorophyll a fluorescence has enhanced understanding of heavy metal ion action on the photosynthetic system. A rapid and non-invasive technique involving imaging of chlorophyll fluorescence is a useful tool for early detection of plant responses to heavy metal ion toxicity. In this work chlorophyll fluorescence emission and photochemical parameters in plants of Populus x euramericana clone I-214 were investigated by the portable Imaging PAM fluorometer at different days after soil treatment with zinc. Custom software for analysis of the photochemical parameters images has been developed in order to gain a better assessing of the plant performance in response of metal stress. The imaging analysis allowed visualizing heterogeneity in plant response to high zinc concentrations. The heterogeneity of images suggests spatial differences in photochemical activity and changes in the antenna down-regulation.  相似文献   

20.
Lead, similar to other heavy metals and abiotic factors, causes many unfavorable changes at the subcellular and molecular levels in plant cells. An increased level of superoxide anion in Pisum sativum root cells treated with 1 mM Pb(NO3)2 evidenced oxidative stress conditions. We found increased activities of enzymatic components of the antioxidative system (catalase and superoxide dismutase) in the cytosol, mitochondrial and peroxisomal fractions isolated from root cells of Pisum sativum grown in modified Hoagland medium in the presence of lead ions (0.5 or 1 mM). Two isoenzyme forms of superoxide dismutase (Cu,Zn-SOD and Mn-SOD) found in different subcellular compartments of pea roots were more active in Pb-treated plants than in control. Increased amount of alternative oxidase accompanied by an increased activity of this enzyme was found in mitochondria isolated from lead-treated roots. These results show that plants storing excessive amounts of lead in roots defend themselves against the harmful oxidative stress caused by this heavy metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号