首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Diffusion Magnetic Resonance Imaging provides images of unquestionable diagnostic value. It is commonly used in the assessment of stroke and in white matter fiber tracking, among other applications. The diffusion coefficient has been shown to depend on cell concentration, membrane permeability, and cell orientation in the case of white matter or muscle fiber tracking; yet a clear relation between diffusion measurements and known physiological parameters is not established. The aim of this paper is to review hypotheses and actual knowledge on diffusion signal origin to provide assistance in the interpretation of diffusion MR images. Focus will be set on brain images, as most common applications of diffusion MRI are found in neuroradiology. Diffusion signal does not come from two intra- or extracellular compartments, as was first assumed. Restriction of water displacement due to membranes, hindrance in the extracellular space, and tissue heterogeneity are important factors. Unanswered questions remain on how to deal with tissue heterogeneity, and how to retrieve parameters less troublesome to work with from biological and clinical points of view. Diffusion quantification should be done with care, as many variables can lead to variation in measurements.  相似文献   

3.
4.
5.
6.
7.
Magnetic resonance imaging (MRI) has been shown to be useful in the detection of brain activity via the relatively indirect coupling of neural activity to cerebral blood flow and subsequently to magnetic resonance signal intensity. Recent technical advances have made possible the continuous collection of successive images at a rate rapid compared with such signal changes and in the statistical processing of these image time series to produce tomographic maps of brain activity in real time, with updates of 10 frames/s or better. We describe here our preferred method of real-time functional MRI and some of the early results we have obtained with its use.  相似文献   

8.
9.
10.
This review presents an overview of some recent magnetic resonance imaging (MRI) techniques for measuring aspects of local physiology in the lung. MRI is noninvasive, relatively high resolution, and does not expose subjects to ionizing radiation. Conventional MRI of the lung suffers from low signal intensity caused by the low proton density and the large degree of microscopic field inhomogeneity that degrades the magnetic resonance signal and interferes with image acquisition. However, in recent years, there have been rapid advances in both hardware and software design, allowing these difficulties to be minimized. This review focuses on some newer techniques that measure regional perfusion, ventilation, gas diffusion, ventilation-to-perfusion ratio, partial pressure of oxygen, and lung water. These techniques include contrast-enhanced and arterial spin-labeling techniques for measuring perfusion, hyperpolarized gas techniques for measuring regional ventilation, and apparent diffusion coefficient and multiecho and gradient echo techniques for measuring proton density and lung water. Some of the major advantages and disadvantages of each technique are discussed. In addition, some of the physiological issues associated with making measurements are discussed, along with strategies for understanding large and complex data sets.  相似文献   

11.
12.
Brain imaging tools in neurosciences   总被引:3,自引:1,他引:2  
In this chapter brain imaging tools in neurosciences are presented. These include a brief overview on single-photon emission tomography (SPET) and a detailed focus on positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). In addition, a critical discussion on the advantages and disadvantages of the three diagnostic systems is added.Furthermore, this article describes the image analysis tools from visual analysis over region-of-interest technique up to statistical parametric mapping, co-registration methods, and network analysis. It also compares the newly developed combined PET/CT scanner approach with established image fusion software approaches.There is rapid change: Better scanner qualities, new software packages and scanner concepts are on the road paved for an amply bright future in neurosciences.  相似文献   

13.
This article aims to provide an educational document of magnetic resonance imaging principles for applied biomedical users of the technology. Basic principles are illustrated using simple experimental models on a preclinical imaging system.  相似文献   

14.
Methodology of magnetic resonance imaging   总被引:1,自引:0,他引:1  
  相似文献   

15.
Hypotension in adult animals recruits brain sites extending from cerebellar cortex to the midbrain and forebrain, suggesting a range of motor and endocrine reactions to maintain perfusion. We hypothesized that comparable neural actions during development rely more extensively on localized medullary processes. We used functional MRI to assess neural responses during sodium nitroprusside challenges in 14 isoflurane-anesthetized kittens, aged 14-25 days, and seven adult cats. Baseline arterial pressure increased with age in kittens, and basal heart rates were higher. The magnitude of depressor responses increased with age, while baroreceptor reflex sensitivity initially increased over those of adults. In contrast to a decline in adult cats, functional MRI signal intensity increased significantly in dorsal and ventrolateral medullary regions and the midline raphe in the kittens during the hypotensive challenges. In addition, significant signal intensity differences emerged in cerebellar cortex and deep nuclei, dorsolateral pons, midbrain tectum, hippocampus, thalamus, and insular cortex. The altered neural responses in medullary baroreceptor reflex sites may have resulted from disinhibitory or facilitatory influences from cerebellar and more rostral structures as a result of inadequately developed myelination or other neural processes. A comparable immaturity of blood pressure control mechanisms in humans would have significant clinical implications.  相似文献   

16.
Various artifacts of Magnetic Resonance Imaging (MRI) typically associated with currently available imaging techniques such as projection reconstruction and two-dimensional fourier transform (2D-FT) are described and illustrated. Examples of MRI artifacts were obtained with an imaging unit with a super conducting magnet operated at .15 Tesla and .27 Tesla with corresponding proton resonance frequency of 6.4 MHz and 11.25 MHz. The .15 Tesla images were obtained using projection reconstruction and the .27 Tesla using the 2D-FT method. Instrument related artifacts include those due to direct current (DC), projection, gradient offset, active shimming, phase encoding, and pulse sequencing. Other often encountered artifacts are related to the patient. These include those due to motion, ferromagnetic effect, and tissue contents. The cause of these artifacts and how (if possible) they may be eliminated or minimized is discussed.  相似文献   

17.
Uthaya S  Bell J  Modi N 《Hormone research》2004,62(Z3):143-148
Infancy is a period of rapid adipose tissue accumulation, and influences during early development are plausible determinants of altered adiposity. The distribution, as well as the quantity of adipose tissue, is a marker of health and disease. Previous methods for the assessment of body composition in infants have been indirect and thus unable to determine adipose quantity reliably, nor assess adipose tissue distribution. Adipose tissue magnetic resonance imaging is direct, non-invasive, radiation free and suitable for serial examinations in infancy. Adipose tissue depots are quantified individually and summated to provide an accurate measure of depot-specific and total adiposity. We have adapted this technique for application to newborns and, to date, have imaged over 100 term and preterm infants.  相似文献   

18.
Microimaging based on magnetic resonance is an experimental technique that can provide a unique view of a variety of plant physiological processes. Particularly interesting applications include investigations of water movement and spatially resolved studies of the transport and accumulation of labelled molecules in intact plant tissue. Some of the fundamental principles of nuclear and electron magnetic resonance microimaging are explained here and the potential of these techniques is shown using several representative examples.  相似文献   

19.
Functional magnetic resonance imaging (fMRI) is a widely used technique for generating images or maps of human brain activity. The applications of the technique are widespread in cognitive neuroscience and it is hoped they will eventually extend into clinical practice. The activation signal measured with fMRI is predicated on indirectly measuring changes in the concentration of deoxyhaemoglobin which arise from an increase in blood oxygenation in the vicinity of neuronal firing. The exact mechanisms of this blood oxygenation level dependent (BOLD) contrast are highly complex. The signal measured is dependent on both the underlying physiological events and the imaging physics. BOLD contrast, although sensitive, is not a quantifiable measure of neuronal activity. A number of different imaging techniques and parameters can be used for fMRI, the choice of which depends on the particular requirements of each functional imaging experiment. The high-speed MRI technique, echo-planar imaging provides the basis for most fMRI experiments. The problems inherent to this method and the ways in which these may be overcome are particularly important in the move towards performing functional studies on higher field MRI systems. Future developments in techniques and hardware are also likely to enhance the measurement of brain activity using MRI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号