首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malignant hyperthermia (MH) is a potentially lethal pharmacogenetic disease for which MH susceptibility (MHS) is transmitted as an autosomal dominant trait. A potentially life-threatening MH crisis is triggered by exposure to commonly used inhalational anesthetics and depolarizing muscle relaxants. The first malignant hyperthermia susceptibility locus (MHS1) was identified on human chromosome 19q13.1, and evidence has been obtained that defects in the gene for the calcium-release channel of skeletal muscle sarcoplasmic reticulum (ryanodine receptor; RYR1) can cause some forms of MH. However, MH has been shown to be genetically heterogeneous, and additional loci on chromosomes 17q and 7q have been suggested. In a collaborative search of the human genome with polymorphic microsatellite markers, we now found linkage of the MHS phenotype, as assessed by the European in vitro contracture test protocol, to markers defining a 1-cM interval on chromosome 3q13.1. A maximum multipoint lod score of 3.22 was obtained in a single German pedigree with classical MH, and none of the other pedigrees investigated in this study showed linkage to this region. Linkage to both MHS1/RYR1 and putative loci on chromosome 17q and 7q were excluded. This study supports the view that considerable genetic heterogeneity exists in MH.  相似文献   

2.
Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2+/-8.5 vs. 64.2+/-9.7 years; P=.0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (straight theta=0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.  相似文献   

3.
Employing 16 polymorphic DNA markers as well as the chromosome 19 centromere heteromorphism, we have performed a genetic linkage study in 26 families with myotonic dystrophy. Fourteen of these markers had been assigned previously to one of five different intervals of the 19cen-19q13.2 segment by using somatic cell hybrids. For the long arm of chromosome 19, a genetic map that encompasses 9 polymorphic markers and the DM gene has been constructed. Our studies indicate that the DM and CKMM genes map distal to the ApoC2-ApoE gene cluster and to the anonymous polymorphic markers D19S15 and D19S16, but proximal to the D19S22 marker. The orientation of DM and CKMM remains to be determined.  相似文献   

4.
Members of a large pedigree of Irish origin presenting with early onset Type I autosomal dominant retinitis pigmentosa (ADRP) have been typed for polymorphic DNA markers from chromosomes 6, 13, 20, and 21. For each marker close linkage to ADRP has been excluded by pairwise analyses. Using distances fixed from well-established genetic maps of these chromosomes and multipoint analyses with two or three contiguous markers, exclusion of ADRP was extended to the areas between markers, resulting in the exclusion of ADRP from extensive regions of each chromosome, totaling approximately 500 cM or 15% of the genome. The study indicates the large quantity of linkage/exclusion data obtainable using well-spaced highly polymorphic markers.  相似文献   

5.
Multiple epiphyseal dysplasia (MED) is an inherited chondrodystrophy that results in deformity of articular surfaces and in subsequent degenerative joint disease. The disease is inherited as an autosomal dominant trait with high penetrance. An MED mutation has been mapped by genetic linkage analysis of DNA polymorphisms in a single large pedigree. Close linkage of MED to 130 tested chromosomal markers was ruled out by discordant inheritance patterns. However, strong evidence for linkage of MED to markers in the pericentromeric region of chromosome 19 was obtained. The most closely linked marker was D19S215, with a maximum LOD score of 6.37 at theta = .05. Multipoint linkage analysis indicated that MED is located between D19S212 and D19S215, a map interval of 1.7 cM. Discovery of the map location of MED in this family will facilitate identification of the mutant gene. The closely linked DNA polymorphisms will also provide the means to determine whether other inherited chondrodystrophies have underlying defects in the same gene.  相似文献   

6.
Members of a large pedigree of Irish origin presenting with early onset Type I autosomal dominant retinitis pigmentosa (ADRP) have been typed for D3S47 (C17), a polymorphic marker from the long arm of chromosome 3. Significant, tight linkage of ADRP to D3S47, with a lod score of 14.7 maximizing at 0.00 recombination, has been obtained, hence localizing the ADRP gene (RP1) segregating in this pedigree to 3q.  相似文献   

7.
DNA from members of a three-generation pedigree of Irish origin, displaying an autosomal dominant simplex form of epidermolysis bullosa of the epidermolytic, simplex, or Koebner variety (EBS2), was analyzed for linkage with a set of markers derived from the long arm of chromosome 1. Two-point analysis revealed positive lod scores for five of these markers, AT3 (Z = 2.107, theta = 0), APOA2 (Z = 1.939, theta = 0.15), D1S66 (Z = 1.204, theta = 0), D1S13 (Z = 1.026, theta = 0.15), and D1S65 (Z = 0.329, theta = 0.15). Multilocus analysis, incorporating the markers D1S19, D1S16, D1S13, APOA2, D1S66, AT3, and D1S65, resulted in a lod score of 3 maximizing at AT3. These data strongly support previous tentative indications of linkage between EBS2 and genetic markers on the long arm of chromosome 1.  相似文献   

8.
A locus for malignant hyperthermia susceptibility (MHS) has been localized on chromosome 19q12-13.2, while at the same time the gene encoding the skeletal muscle ryanodine receptor (RYR1) also has been mapped to this region and has been found to be tightly linked to MHS. RYR1 was consequently postulated as the candidate for the molecular defect causing MHS, and a point mutation in the gene has now been identified and is thought to be the cause of MH in at least some MHS patients. Here we report the results of a linkage study done with 19q12-13.2 markers, including the RYR1 cDNA, in two Bavarian families with MHS. In one of the families, three unambiguous recombination events between MHS and the RYR1 locus were found. In the second family only one informative meiosis was seen with RYR1. However, segregation analysis with markers for D19S75, D19S28, D19S47, CYP2A, BCL3, and APOC2 shows that the crossovers in the first family involve the entire haplotype defined by these markers flanking RYR1 and, furthermore, reveals multiple crossovers between these haplotypes and MHS in the second family. In these families, pairwise and multipoint lod scores below -2 exclude MHS from an interval spanning more than 26 cM and comprising the RYR1 and the previously described MHS locus. Our findings thus strongly suggest genetic heterogeneity of the MHS trait and prompt the search for another MHS locus.  相似文献   

9.
Summary A linkage analysis has been performed on three Australian families segregating for autosomal dominant retinitis pigmentosa (ADRP). No evidence of linkage has been found in any of the pedigrees studied between the locus D3S47 and the gene for ADRP. The D3S47 locus was found to show very close linkage with the ADRP gene in a large Irish pedigree. Our study together with a similar report on a British family indicates that there is genetic heterogeneity in this disease.  相似文献   

10.
Malignant hyperthermia susceptibility (MHS) is a potentially lethal, hereditary disorder of skeletal muscle that may be triggered by inhalation anesthetics and depolarizing muscle relaxants. Defects in the gene encoding the ryanodine receptor (RYR1) localized on human chromosome 19q13.1 have been proposed to be responsible for MHS. Using a chromosome 19-specific human/hamster somatic cell hybrid mapping panel, we were able to determine that four closely linked microsatellite repeat markers bracket RYR1 with the order 19cen-D19S75-D19S191-RYR1-(D19S47, D19S190)-19ter. Application of the four markers to genetic studies of MHS showed recombination between the markers and MHS in two families, with linkage analysis apparently excluding the MHS locus from the RYR1 region of 19q13.1. These results therefore support the recent observations of genetic heterogeneity in MHS.  相似文献   

11.
Presymptomatic genetic testing for the presence of a mutant allele causing familial adenomatous polyposis coli (APC) has been difficult to perform effectively in the past because DNA markers surrounding the APC gene on chromosome 5q have not been very informative. We report results of genetic linkage studies on both research families and clinical families by using D5S346, a highly polymorphic dinucleotide (CA)-repeat locus 30-70 kb from the APC gene. Linkage analysis with this marker in a large APC pedigree showed an increase of at least 9.0 LOD units, in likelihood of linkage of the disease-causing allele to the APC locus, when compared with the highest LOD score attained with any other closely linked marker. When the first 14 APC families that requested genotypic analysis by the DNA Diagnostic Laboratory at the University of Utah were tested with D5S346, 20 of the 31 at-risk individuals were identified as either carriers or noncarriers of an APC-predisposing allele. We see this marker as an important tool for research studies and for the presymptomatic diagnosis of APC.  相似文献   

12.
A number of genetic markers, including ATP1A3, TGFB, CKMM, and PRKCG, define the genetic region on human chromosome 19 containing the myotonic dystrophy locus. These and a number of other DNA probes have been mapped to mouse chromosome 7 utilizing a mouse Mus domesticus/Mus spretus interspecific backcross segregating for the genetic markers pink-eye dilution (p) and chinchilla (cch). The establishment of a highly syntenic group conserved between mouse chromosome 7 and human chromosome 19q indicates the likely position of the homologous gene locus to the human myotonic dystrophy gene on proximal mouse chromosome 7. In addition, we have mapped the muscle ryanodine receptor gene (Ryr) to mouse chromosome 7 and demonstrated its close linkage to the Atpa-2, Tgfb-1, and Ckmm cluster of genes. In humans, the malignant hyperthermia susceptibility locus (MHS) also maps close to this gene cluster. The comparative mapping data support Ryr as a candidate gene for MHS.  相似文献   

13.
Genetic linkage studies were performed in 22 families with von Hippel-Lindau (VHL) disease by using polymorphic DNA markers from distal chromosome 3p. Linkage was detected between VHL disease and the markers D3S18 (Zmax = 6.6 at theta = 0.0, confidence interval (CI) 0.00-0.06), RAF1 (Zmax = 5.9 at theta = 0.06, CI 0.01-0.16), and THRB (Zmax 3.4 at theta = 0.11). Multipoint linkage analysis localized the VHL disease gene within a small region (approximately 8 cM) of 3p25-p26 between RAF1 and (D3S191, D3S225) and close to the D3S18 locus. There was no evidence of locus heterogeneity, and families with and without pheochromocytoma showed linkage to D3S18. The identification of DNA markers flanking the VHL disease gene allows reliable presymptomatic and prenatal diagnosis to be offered to informative families.  相似文献   

14.
A locus for migraine without aura maps on chromosome 14q21.2-q22.3   总被引:8,自引:0,他引:8  
Migraine is a common and disabling neurological disease of unknown origin characterized by a remarkable clinical variability. It shows strong familial aggregation, suggesting that genetic factors are involved in its pathogenesis. Different approaches have been used to elucidate this hereditary component, but a unique transmission model and causative gene(s) have not yet been identified. We report clinical and molecular data from a large Italian pedigree in which migraine without aura (MO) segregates as an autosomal dominant trait. After exclusion of any association between MO and the known familial hemiplegic migraine and migraine with aura loci, we performed a genomewide linkage analysis using 482 polymorphic microsatellite markers. We obtained significant evidence of linkage between the MO phenotype and the marker D14S978 on 14q22.1 (maximum two-point LOD score of 3.70, at a recombination fraction of 0.01). Multipoint parametric analysis (maximum LOD score of 5.25 between markers D14S976 and D14S978) and haplotype construction showed strong evidence of linkage in a region of 10 cM flanked by markers D14S1027 and D14S980 on chromosome 14q21.2-q22.3. These results indicate the first evidence of a genetic locus associated with MO on chromosome 14.  相似文献   

15.
Congenital hereditary endothelial dystrophy (CHED) is a corneal disorder that presents with diffuse bilateral corneal clouding. Vision may be severely impaired, and many patients require corneal transplantation. Both autosomal dominant (AD) and autosomal recessive (AR) forms of the disorder have been described. The gene responsible for AD CHED (HGMW-approved symbol CHED1) has been mapped to the pericentromeric region of chromosome 20. Investigating a large, consanguineous Irish pedigree with autosomal recessive CHED, we have previously excluded linkage to this AD CHED locus. We now describe a genome-wide search using homozygosity mapping and DNA pooling. Evidence of linkage to chromosome 20p was demonstrated with a maximum lod score of 9.30 at a recombination fraction of 0.0 using microsatellite marker D20S482. A region of homozygosity in all affected individuals was identified, narrowing the disease gene locus to an 8-cM region flanked by markers D20S113 and D20S882. This AR CHED (HGMW-approved symbol CHED2) disease gene locus is physically and genetically distinct from the AD CHED locus.  相似文献   

16.
A point mutation in the gene encoding the skeletal muscle calcium release channel (RYR1) has been proposed as the probable cause of malignant hyperthermia (MH) in swine, where it segregates with the disease in all MH–prone strains investigated. The same C-to-T exchange in nucleotide position 1840 of the human RYR1 cDNA sequence was found in a few human MH pedigrees. We report a German MH pedigree where in vitro contracture test (IVCT) results and haplotypes of markers for the MHS1/RYR1 region including this base transition have yielded several discrepancies. The MH-susceptible phenotype was defined by IVCT performed according to the European standard protocol. Haplotypes were constructed for markers for the MHS1/RYR1 region on chromosome 19 and include the C1840T base exchange. Discussing the probabilities for a number of hypotheses to explain these data, we suggest that our results may challenge the causative role of this mutation—and possibly the role of the RYR1 gene itself—in human MH susceptibility, at least in some cases.  相似文献   

17.
Branchio-oto-renal syndrome (BOR) is an autosomal dominant disorder associated with external-, middle-, and inner-ear malformations, branchial cleft sinuses, cervical fistulas, mixed hearing loss, and renal anomalies. The gene for BOR was mapped to the long arm of chromosome 8q. Several polymorphic dinucleotide repeat markers were investigated for linkage in two large BOR families, and the region of localization was refined. Two-point linkage analysis yielded the maximum lod scores of 7.44 at theta = .03 and 6.71 at theta = .04, with markers D8S279 and D8S260, respectively. A multipoint analysis was carried out to position the BOR gene with a defined region using markers D8S165, D8S285, PENK, D8S166, D8S260, D8S279, D8S164, D8S286, D8S84, D8S275, D8S167, D8S273, and D8S271. Haplotype analysis of recombination events at these polymorphic loci was also performed in multigeneration BOR kindreds. The linkage analysis and analysis of recombination events identified markers that clearly flank the BOR locus. The order was determined to be D8S260-BOR-D8S279 at odds > 10(3):1 over the other possible orders. This flanking markers provide a resource for high-resolution mapping toward cloning and characterizing the BOR gene.  相似文献   

18.
Stargardt disease (STGD) and fundus flavimaculatus are infrequent autosomal recessive conditions characterized by a juvenile macular dystrophy and variable degrees of peripheral retinal changes. Linkage analysis performed in 47 STGD/fundus flavimaculatus families demonstrated significant linkage to 13 polymorphic DNA markers on chromosome 1p. The maximum combined two-point lod score was 32.7 (maximum recombination fraction [phi max] = .006) with the polymorphic marker D1S188. Our data demonstrate that STGD and fundus flavimaculatus are the same disorder clinically and genetically and provide further evidence for genetic homogeneity of this phenotype. Analysis of recombination events on disease chromosomes placed the STGD gene within a 4-cM interval between markers D1S435 and D1S236. A physical map was constructed of a YAC contig flanking STGD, from markers D1S500 to D1S495, and includes the critical interval delineated by historical recombinants. This contig spans approximately 31 cM, with one gap (3-5 cM) that is outside the 4-cM critical region. Localization of STGD to a single YAC contig will facilitate its positional cloning.  相似文献   

19.
Localization of a gene for syndactyly type 1 to chromosome 2q34-q36   总被引:2,自引:0,他引:2       下载免费PDF全文
Syndactyly type 1 (SD1) is an autosomal dominant limb malformation characterized in its classical form by complete or partial webbing between the third and fourth fingers and/or the second and third toes. After exclusion of a candidate region previously identified for syndactyly type 2 (synpolydactyly), we performed a genomewide linkage analysis in a large German pedigree. We found evidence for linkage of SD1 to polymorphic markers on chromosome 2q34-q36, with a maximum LOD score of 12.40 for marker D2S301. Key recombination events in affected individuals defined a 9.4-cM region between markers D2S2319 and D2S344. The identification of the responsible gene will give further insights into the molecular basis of limb development.  相似文献   

20.
We have examined 26 Canadian families with hereditary breast or ovarian cancer for linkage to markers flanking the BRCA1 gene on chromosome 17q12–q21. Of the 15 families that contain cases of ovarian cancer, 94% were estimated to be linked to BRCA1. In contrast, there was no overall evidence of linkage in the group of 10 families with breast cancer without ovarian cancer. A genetic recombinant in a breast-ovarian cancer family indicates a placement of BRCA1 telomeric to D17S776, and helps to define the region of assignment of the cancer susceptibility gene. Other cancers of interest that appeared in the BRCA1-linked families included primary peritoneal cancer, cancer of the fallopian tube, and malignant melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号