首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatitis C virus has been shown to be responsible for most cases of posttransfusion hepatitis, as well as for sporadic non-A, non-B viral hepatitis. Hepatitis C virus has also been implicated in the development of primary hepatocellular carcinoma, autoimmune hepatitis, and fulminant viral hepatitis. Although the role of the parenteral transmission of hepatitis C virus is well established, its route of transmission in cases of sporadic infection remains unclear. Sexual transmission is suspected but not confirmed. Recent work regarding treatment has shown interferon alfa to be effective, but the discontinuation of therapy is associated with a 50% relapse rate.  相似文献   

2.
3.
4.
5.
Hepatitis C virus infection represents a major problem of public health with around 350 millions of chronically infected individuals worldwide. The frequent evolution towards severe liver disease and cancer are the main features of HCV chronic infection. Antiviral therapies, mainly based on the combination of IFN and ribavirin can only assure a long term eradication of the virus in less than half of treated patients. The mechanisms underlying HCV pathogenesis and persistence in the host are still largely unknown and the efforts made by researchers in the understanding the viral biology have been hampered by the absence of a reliable in vitro and in vivo system reproducing HCV infection. The present review will mainly focus on viral pathogenetic mechanisms based on the interaction of HCV proteins (especially core, NS3 and NS5A) with host cellular signaling transduction pathways regulating cell growth and viability and on the strategies developed by the virus to persist in the host and escape to antiviral therapy. Past and recent data obtained in this field with different experimental approaches will be discussed.  相似文献   

6.
Hepatitis C virus entry   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
Hepatitis C virus envelope proteins bind lactoferrin.   总被引:14,自引:0,他引:14       下载免费PDF全文
M Yi  S Kaneko  D Y Yu    S Murakami 《Journal of virology》1997,71(8):5997-6002
Hepatitis C virus (HCV) has two envelope proteins, E1 and E2, which form a heterooligomer. During dissection of interacting regions of HCV E1 and E2, we found the presence of an interfering compound or compounds in skim milk. Here we report that human as well as bovine lactoferrin, a multifunctional immunomodulator, binds two HCV envelope proteins. As determined by far-Western blotting, the bacterially expressed E1 and E2 could bind lactoferrin in human milk directly separated or immunopurified and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The bindings of lactoferrin and HCV envelope proteins in vitro were confirmed by another method, the pull-down assay, with immunoprecipitated lactoferrin-bound protein A resin. By the same assay, mammal-expressed recombinant E1 and E2 were also demonstrated to bind human lactoferrin efficiently in vitro. Direct interaction between E2 and lactoferrin was proved in vivo, since anti-human lactoferrin antibody efficiently coimmunoprecipitated with secreted and intracellular forms of the E2 protein, but not glutathione S-transferase (GST), from lysates of HepG2 cells transiently cotransfected with the expression plasmids of human lactoferrin and gE2t-GST (the N-terminal two-thirds of E2 fused to GST) or GST. The N-terminal loop of lactoferrin, the region important for the antibacterial activity, has only a little role in the binding ability to HCV E2 but affected the secretion or stability of lactoferrin. Taken together, these results indicate the specific interaction between lactoferrin and HCV envelope proteins in vivo and in vitro.  相似文献   

10.
Hepatitis A virus (HAV) 3C proteinase is responsible for processing the viral precursor polyprotein into mature proteins. The substrate specificity of recombinant hepatitis A 3C proteinase was investigated using a series of synthetic peptides representing putative polyprotein junction sequences. Two peptides, corresponding to the viral polyprotein 2B/2C and 2C/3A junctions, were determined to be cleaved most efficiently by the viral 3C proteinase. The kcat/Km values determined for the hydrolysis of a further series of 2B/2C peptides, in which C-terminal and N-terminal amino acids were systematically removed, revealed that P4 through P2' amino acids were necessary for efficient substrate cleavage. The substitution of Ala for amino acids in P1 and P4 positions decreased the rate of peptide hydrolysis by 100- and 10-fold, respectively, indicating that the side chains of Gln in P1 and Leu in P4 are important determinants of substrate specificity. Rates of hydrolysis measured for other P1- and P4-substituted peptides indicate that S1 is very specific for the Gln side chain whereas S4 requires only that the amino acid in P4 be hydrophobic. A continuous fluorescence quench assay was developed, allowing the determination of kcat/Km dependence on pH. The pH rate profile suggests that catalyzed peptide hydrolysis is dependent on deprotonation of a reactive group having a pKa of 6.2 (+/- 0.2). The results of tests with several proteinase inhibitors indicate that this cysteine proteinase, like other picornaviral 3C proteinases, is not a member of the papain family.  相似文献   

11.
12.
Details of the ultrastructure of hepatitis C virus (HVC) virion remain unclear because it has proved extremely difficult to visualise virus particles from infected serum and tissues directly. In addition, although much is known about the viral genome, first cloned in 1989, little is known about HCV morphogenesis, due to the lack of an efficient in vitro culture system for HCV propagation. Virus-like particles (VLPs) obtained by expressing genes encoding the HCV structural proteins in mammalian cells can be used as an alternative model for studying HCV morphogenesis. In particular, this HCV-LP model has made it possible to demonstrate that HCV budding occurs at the ER membrane and that the core protein drives this process. The HCV-LP model opens up new possibilities for the investigation of viral morphogenesis and virus-host cell interactions, which may make it possible to establish the long-awaited in vitro culture system for HCV.  相似文献   

13.
A proteome‐wide mapping of interactions between hepatitis C virus (HCV) and human proteins was performed to provide a comprehensive view of the cellular infection. A total of 314 protein–protein interactions between HCV and human proteins was identified by yeast two‐hybrid and 170 by literature mining. Integration of this data set into a reconstructed human interactome showed that cellular proteins interacting with HCV are enriched in highly central and interconnected proteins. A global analysis on the basis of functional annotation highlighted the enrichment of cellular pathways targeted by HCV. A network of proteins associated with frequent clinical disorders of chronically infected patients was constructed by connecting the insulin, Jak/STAT and TGFβ pathways with cellular proteins targeted by HCV. CORE protein appeared as a major perturbator of this network. Focal adhesion was identified as a new function affected by HCV, mainly by NS3 and NS5A proteins.  相似文献   

14.
Interferon plays a critical role in the host's natural defense against viral infections and in their treatment. It is the only therapy for hepatitis C virus (HCV) infection; however, many virus isolates are resistant. Several HCV proteins have been shown to possess properties that enable the virus to evade the interferon-mediated cellular antiviral responses.  相似文献   

15.
16.
17.
18.
19.
Hepatitis C virus (HCV) is a small enveloped virus with a positive stranded RNA genome belonging to the Flaviviridae family. The virion has the unique ability of forming a complex with lipoproteins, which is known as the lipoviroparticle. Lipoprotein components as well as the envelope proteins, E1 and E2, play a key role in virus entry into the hepatocyte. HCV entry is a complex multistep process involving sequential interactions with several cell surface proteins. The virus relies on glycosaminoglycans and possibly the low-density lipoprotein receptors to attach to cells. Furthermore, four specific entry factors are involved in the following steps which lead to virus internalization and fusion in early endosomes. These molecules are the scavenger receptor SRB1, tetraspanin CD81 and two tight junction proteins, Claudin-1 and Occludin. Although they are essential to HCV entry, the precise role of these molecules is not completely understood. Finally, hepatocytes are highly polarized cells and which likely affects the entry process. Our current knowledge on HCV entry is summarized in this review.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号