首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was demonstrated that, in the phenotypically colorless leaves of a sunflower (Helianthus annuusL.) plastome mutant with a heavily reduced level of chlorophyll, all pigment–protein complexes of the photosynthetic apparatus typical for the wild type were present. However, the ratio between them was changed. During aging of the mutant leaves, pigment–protein complexes of photosystem I were destroyed first followed by those of photosystem II. Chlorophyll a/b-containing light-harvesting complex II turned out to be the most stable. This conforms to an increased content of lutein and violaxanthin in mutant leaves. A synchrony of the decreases in the chlorophyll and 5-aminolevulinic acid (ALA) contents throughout all ontogenetic stages of the colorless mutant leaves made it possible to suggest that a decrease in the synthesis and resynthesis of chlorophyll during the formation and development of such leaves is caused by the inhibition of an initial stage of this process, namely, the biosynthesis of ALA molecules. The activity of the enzymes converting ALA into protochlorophyllide did not limit chlorophyll biosynthesis. Possible mechanisms controlling the synthesis of ALA destined for chlorophyll formation are discussed.  相似文献   

2.
Laevulinic acid (LA) inhibited chlorophyll formation and δ-aminolaevulinic acid (ALA) accumulation in dark-grown barley leaves. Mole ratios (ALA: chlorophyll × 8) indicate that LA decreased ALA production by about 30%. The turnover of glycine-[14C] in 7-day-old leaves treated with LA was 70% slower than in control tissue and this resulted in an increase in endogenous glycine. Total amino acid also increased in LA treated leaves. The data indicate that any contribution made by glycine to ALA synthesis in LA-treated barley leaves would be significantly restricted.  相似文献   

3.
An RNA moiety has been shown to be involved in the conversion of Glu to delta-aminolevulinic acid (ALA), the first committed intermediate of the chlorophyll pathway. We now have evidence suggesting that in Chlamydomonas, the first reaction for converting Glu to ALA is the aminoacylation of Glu to a Glu-specific tRNA. The Glu-tRNA thus formed could be the substrate for Glu-1-semialdehyde synthesis catalyzed by a postulated dehydrogenase. Glu-1-semialdehyde can be converted to ALA by an aminotransferase. Of the three reactions converting Glu to ALA, only the second reaction, catalyzed by a postulated dehydrogenase, is sensitive to inhibition by heme (a known inhibitor of ALA synthesis). We think the regulated enzyme of ALA synthesis is the postulated dehydrogenase. It is postulated that in the chloroplast of Chlamydomonas, the synthesis of ALA and the synthesis of proteins may share a common pool of glutamyl-tRNA.  相似文献   

4.
J. T. O. Kirk 《Planta》1967,78(2):200-207
Summary Experiments have been carried out to determine the basis for the dependence of chloroplast pigment synthesis on protein synthesis in dark-grown cells of Euglena gracilis greening in the light. The complete inhibition of chlorophyll synthesis brought about by actidione (10 g/ml) when added half way through the greening process was not relieved, even to the slightest extent, when 0.01 M -aminolaevulinic acid (ALA) was also present. The much smaller inhibition of chlorophyll synthesis brought about by chloramphenicol (2 mg/ml) was also relieved little, if at all, by the addition of ALA. It is concluded that the inhibition of chlorophyll synthesis by actidione can not be solely or primarily due to lack of ALA resulting from the decay of possibly labile enzymes of ALA synthesis, but could be due to inhibition of synthesis of the thylakoid structural protein. The results obtained with chloramphenicol are difficult to interpret because of the possibility that the drug, at high concentration, directly inhibits processes other than protein synthesis.Chlorophyll and carotenoid synthesis by E. gracilis were both markedly stimulated by the addition of ALA. It is suggested that the rate of chlorophyll synthesis in the greening cells is limited by the rate of formation of ALA. The stimulation of formation of carotenoids as well as chlorophyll may indicate that the cells have a mechanism for ensuring that the rate of carotenoid synthesis does not fall below a certain proportion of the rate of chlorophyll synthesis.A nomogram has been devised from which the concentrations of chlorophylls a and b, and total chlorophyll can be read off once the absorbances of an 80% acetone extract at 663 and 645 m have been determined.  相似文献   

5.
The enzymes involved in the biosynthesis of chlorophyll (Chl)in pigment-deficient variegated leaves of Euonymus japonicuswere investigated. Each variegated leaf was composed of clearlydelineated green and white sectors. The white sectors containedalmost no Chls. The rate of synthesis of 5-aminolevulinic acid(ALA) in the white sectors in vivo was twice that in the greensectors. The level of glutamate 1-semialdehyde aminotransferasein the white sectors was much higher than that in the greensectors. Plastidic tRNAGlu was also present at substantial levelsin the white sectors, indicating that the system for synthesisof ALA was very active in the white sectors. The activity of porphobilinogen (PBG) synthase in the whitesectors in vitro was twice that in the green sectors. In thewhite sectors the rate of porphyrin synthesis from PBG was 4-to 6-fold higher than in the green sectors. We measured Mg-chelataseactivity indirectly in both sectors by monitoring the accumulationof Mg-protoporphyrin IX in the presence of 2,2'-dipyridyl, whichinhibits isocyclic ring formation with the resultant accumulationof Mg-protoporphyrin IX. When sectors were incubated in darknesswith 2,2'-dipyridyl, large amounts of protoporphyrin IX accumulatedin the white sectors, whereas Mg-protoporphyrin IX mainly accumulatedin the green sectors. These results suggest that the enzymesfor the synthesis of porphyrin that catalyze conversion of ALAto protoporphyrin IX were very active and that the Mg-insertionstep might be blocked in the white sectors, with the resultantfailure to synthesize Chl. The deficiency is discussed in acomparison with that in other Chl-deficient plants. (Received November 15, 1995; Accepted March 21, 1996)  相似文献   

6.
Sucrose (but not other sugars) suppresses chlorophyll synthesisin a carrot-callus strain grown on a medium on which free-spaceinvertase does not develop (Heller's mineral elements, thiamine0.1 mg/1, IAA 0.01 mg/1, sucrose 3 per cent). This suppression was not caused by trace contaminants in sucroseor by the lack of available iron in the medium. Suppressionof chlorophyll synthesis by sucrose was reversed by transferof growing tissue to a medium on which high free-space invertaseactivity developed (Murashige and Skoog mineral elements, White'svitamins, 2, 4-D 0.05 mg/1, sucrose 3 per cent). Feeding of porphyrin precursors, and tests of Krebs cycle function,were employed in an attempt to locate the sucrose-inhibitedstep in chloroplast biogenesis.  相似文献   

7.
宽叶吊兰叶绿素生物合成的昼夜节律变化   总被引:1,自引:0,他引:1  
在被子植物中,从谷氨酰-tRNA到叶绿素的生物合成是由许多酶催化的级联反应,其中间代谢产物具有较强的光反应活性和细胞毒性,因此这一过程在细胞内受到严格的调控。本研究通过检测宽叶吊兰叶片叶绿素生物合成途径的14种中间产物含量随昼夜节律的变化,探讨昼夜节律对宽叶吊兰叶绿素生物合成的影响。结果表明,中间产物ALA(δ-氨基乙酰丙酸)、PBG(胆色素原)、ProtoⅨ(原卟啉Ⅸ)、Heme(血红素)、Mg-ProtoⅨ(镁原卟啉Ⅸ)、Chlide a(叶绿素酸酯a)、Chlide b(叶绿素酸酯b)、Chl a(叶绿素a)、Chl b(叶绿素b)受光诱导,而UrogenⅢ(尿卟啉Ⅲ)、CoprogenⅢ(粪卟啉Ⅲ)和Pchlide(原叶绿素酸脂)受黑暗诱导,尤其是Pchlide在黑暗中的积累量显著增加;Mpe(镁原卟啉Ⅸ单甲酯)和Mpde(镁原卟啉Ⅸ二酯)具有2个积累峰值,分别出现在中午12∶00和夜间24∶00。说明叶绿素生物合成受昼夜节律的调控,但其中间代谢产物含量的变化规律与昼夜节律并不完全一致。  相似文献   

8.
The effect of Ni2+ on the early stages of chlorophyll biosynthesis and pheophytinization in Euglena gracilis cells was studied. Incubation of the cells with 10–4 M Ni2+ for 7 days resulted in a higher chlorophyll content, enhanced production of 5-aminolevulinic acid (ALA), and in increased activity of 5-aminolevuluinic acid dehydratase (EC 4.2.1.24, ALAD), as compared to the control cells incubated without Ni2+. At a higher concentration (10–3 M), Ni2+ markedly inhibited chlorophyll accumulation and ALAD activity, as compared to the control cells. At this concentration, Ni2+ also inhibited heme biosynthesis and strongly stimulated ALA production. It seems likely that, by affecting heme synthesis, Ni2+ increases the activity of the ALA production system. However, the suppression of subsequent stages of ALA conversion to chlorophyll, in particular ALAD inhibition, ultimately resulted in almost complete inhibition of chlorophyll biosynthesis. In addition to cessation of de novo chlorophyll synthesis in the presence of Ni2+ (10–3 M) in Euglena cells, the existing chlorophyll was converted into pheophytin and almost completely degraded. We suppose that the Ni2+-induced pheophytinization is caused by an acidic shift of intracellular pH related to an impairment of cell membrane permeability by Ni2+ cations.  相似文献   

9.
5-Aminolevulinic acid (ALA) promoted the growth and yield of several crops and vegetables at concentrations lower than those eliciting herbicidal responses, i.e., less than 1.8 mm by foliar spray and 60 μm by root soaking. To evaluate the physiological action of ALA, the effects of ALA on plants were examined by several bioassay systems at 0.0006–600 μm. ALA at 0.06–6 μm by root soaking increased the growth of rice seedlings in light, but did not affect this in darkness. In horseradish shoot primordia, promotion by ALA was not proportional among total chlorophyll content, chlorophyll concentration, and fresh weight. In the test using pothos, ALA at 0.06 μm elicited the accumulation of chlorophyll, but the photosynthesis of the plants was promoted by treatment together with ALA and nutrients. These results suggest that ALA have a variety of plant physiological effects on chlorophyll synthesis, photosynthesis, and plant growth, and ALA acts as a growth regulator in plants at low concentrations. These effects of ALA were also assumed to be linked to light irradiation and an uptake of fertilizer by plants. However, excess ALA suppressed these effects.  相似文献   

10.
5-Aminolevulinic acid (ALA) synthesis has been shown to be the rate limiting step of tetrapyrrole biosynthesis. Glutamyl-tRNA reductase (GluTR) is the first committed enzyme of plant ALA synthesis and is controlled by interacting regulators, such as heme and the FLU protein. Induced inactivation of the HEMA1 gene encoding GluTR by RNAi expression in tobacco resulted in a reduced activity of Mg chelatase and Fe chelatase indicating a feed-forward regulatory mechanism that links ALA synthesis posttranslationally with late enzymes of tetrapyrrole biosynthesis (Hedtke et al., 2007). Here, the regulatory impact of GluTR was investigated by overexpression of AtHEMA1 in Arabidopsis and tobacco plants. Light-dependent ALA synthesis cannot benefit from an up to 7-fold induced expression of GluTR in Arabidopsis. While constitutive AtHEMA1 overexpression in tobacco stimulates ALA synthesis by 50-90% during light-exposed growth of seedlings, no increase in heme and chlorophyll contents is observed. HEMA1 overexpression in etiolated and dark-grown Arabidopsis and tobacco seedlings leads to additional accumulation of protochlorophyllide. As excessive accumulation of GluTR does not correlate with increased ALA formation, it is hypothesized that ALA synthesis is additionally limited by other effectors that balance the allocation of ALA with the activity of enzymes of chlorophyll and heme biosynthesis.  相似文献   

11.
Chloroplasts observed, by electron microscopy, to be intact and uncontaminated, with high rates of light-dependent protein synthesis and CO2 fixation were isolated from cells grown on low-vitamin-B12 medium in the light or from cells grown in the same medium in the dark and then exposed to light for 36 h. Both types of chloroplasts were active but less variability was encountered with developing chloroplasts from 36-h cells. The 36-h chloroplasts showed good light-dependent incorporation of 5-amino-levulinic acid (ALA) or l-glutamic acid into chlorophyll (Chl) a which was linear for approx. 1 h. The specific activity of the Chl a remained the same after conversion to pheophytin a, methylpheophorbide a or pyromethylpheophorbide a and rechromatography, indicating that the label was in the tetrapyrrole. Incorporation of ALA was inhibited by levulinic acid, and by chloramphenicol and other inhibitors of translation of 70S-type chloroplast ribosomes at concentrations which did not appreciably inhibit photosynthesis but which blocked plastid protein synthesis nearly completely. Cycloheximide, an inhibitor of translation on 87S cytoplasmic ribosomes of Euglena, was without effect. The 70S inhibitors did not block uptake of labeled ALA. Although labeled glycine was taken up by the plastids, no incorporation into Chl a was observed. Thus the developing chloroplasts appear to contain all of the enzymatic machinery necessary to convert glutamic acid to Chl via the C5 pathway of ALA formation but the Shemin pathway from succinyl coenzyme A and glycine to ALA appears to be absent. The requirement for plastid protein synthesis concomitant with Chl synthesis indicates a regulatory interaction and also indicates that at least one protein influencing Chl synthesis is synthesized on 70S-type plastid ribosomes and is subject to metabolic turnover.Abbreviations ALA 5-aminolevulinic acid - Chl chlorophyll  相似文献   

12.
The pigment mutant C-2A' of the green alga Scenedesmus obliquus accumulates considerable amounts of protochlorophyllide (PChlide), when grown in darkness. In this paper it is demonstrated that the accumulated PChlide directly acts on glut-RNA-ligase and thereby blocks further biosynthesis of ALA and chlorophyll. By increasing the amount of ligase at constant concentrations of PChlide and glut-RNA it could clearly be demonstrated that PChlide directly inhibits ligase activity and does not act on the t-RNA. The inhibitory effect of other tetrapyrroles like chlorophyll a, pheophytin a and protoporphyrin IX was much less effective even at oversaturating concentrations.  相似文献   

13.
The effects of podolactone-type plant-growth inhibitors on thebiosynthesis of chlorophyll and its precursor -aminolevulinicacid (ALA) in etiolated barley have been studied and comparedwith those of abscisic acid (ABA). Podolactone E was one ofthe most potent inhibitors and it significantly inhibited chlorophyllformation at 0.1 µM after exposing barley leaves to lightfor 12 h. A lag phase of 4 to 6 hours in the inhibition of synthesisof ALA and chlorophyll by podolactone-type inhibitors occurredin light, but disappeared after preincubation in darkness for15 hours. ABA was the most potent inhibitor of synthesis ofALA but not of chlorophyll. We postulate that the effect ofthe inhibitors is to suppress de novo protein synthesis, possiblyat the translational level. This view is supported by the effectof the compound on -amylase production induced in barley embryosby GA3. 1Biology Department, Utah State University, Logan, Utah; sabbatical1981 at University of Melbourne. 2Biology Department, Humboldt State University; Visiting Professor,Utah State University, August 1982, Summer 1983. (Received November 1, 1983; Accepted March 26, 1984)  相似文献   

14.
Mau YH  Wang WY 《Plant physiology》1988,86(3):793-797
The first committed intermediate of chlorophyll biosynthesis, δ-aminolevulinic acid (ALA), is synthesized from glutamate in the plant cell. The last step of ALA synthesis is a transamination reaction which converts glutamate-1-semialdehyde (GSA) to ALA. The mechanism of the transamination was examined by using glutamate, specifically labeled with either 1-13C or 15N, as substrate for ALA synthesis. After incubating with crude enzymes extracted from Chlamydomonas reinhardtii, the distribution of labels in purified ALA molecules was examined by nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. We found that both isotopes were present in the same ALA molecule. We interpret the results to mean that intermolecular transamination occurs during the conversion of GSA to ALA.  相似文献   

15.
Sucrose suppression of chlorophyll synthesis in carrot callus cultures   总被引:2,自引:0,他引:2  
J. Edelman  A. D. Hanson 《Planta》1971,98(2):150-156
Summary Substrate levels of sucrose were shown to reduce chlorophyll synthesis in carrot tissue culture strain CRT1 but not in strain CRT2. In CRT1 the effect was shown to be a suppression of greening specifically by sucrose rather than a reducing sugar requirement for chlorophyll synthesis. In CRT1 sucrose caused both a reduction in chloroplast numbers per cell and a suppression of lamellar development in plastids. This effect on chloroplast structure was consistent with the observed reduced photosynthetic efficiency (micromoles CO2 per hour per mg chlorophyll) of CRT1 calluses grown on sucrose.  相似文献   

16.
We isolated a soybean (Glycine max) cDNA encoding the heme and chlorophyll synthesis enzyme delta-aminolevulinic acid (ALA) dehydratase by functional complementation of an Escherichia coli hemB mutant, and we designated the gene Alad. ALA dehydratase was strongly expressed in nodules but not in uninfected roots, although Alad mRNA was only 2- to 3-fold greater in the symbiotic tissue. Light was not essential for expression of Alad in leaves of dark-grown etiolated plantlets as discerned by mRNA, protein, and enzyme activity levels; hence, its expression in subterranean nodules was not unique in that regard. The data show that soybean can metabolize the ALA it synthesizes in nodules, which argues in favor of tetrapyrrole formation by the plant host in that organ. Molecular phylogenetic analysis of ALA dehydratases from 11 organisms indicated that plant and bacterial enzymes have a common lineage not shared by animals and yeast. We suggest that plant ALA dehydratase is descended from the bacterial endosymbiont ancestor of chloroplasts and that the Alad gene was transferred to the nucleus during plant evolution.  相似文献   

17.
5-Aminolevulinic acid (ALA) accumulation in dark-grown tobaccocallus cells in the presence of levulinic acid (LA) was followedunder blue or red light or in continuous darkness. Significantformation of ALA continued in the dark. The protochlorophyll-(ide) (Pchl) content of dark-incubated cells remained low becauseof its turnover. We inferred that the feedback inhibition ofALA synthesis by Pchl would not occur in darkincubated calluscells. ALA formation was enhanced by blue light, and this effectreached saturation at an intensity of about 800 mW.m–2.Neither weak nor strong red light affected ALA formation. Fullenhancement of ALA formation by blue light was attained afterfairly long continuous illumination of the callus cells. Thisblue lightenhanced activity of ALA synthesis declined very slowlyduring the subsequent dark incubation. The blue light enhancement of ALA formation was observed incallus cells supplied with sucrose over a wide range of concentrations.Pchl regeneration in carbon-starved callus cells, supplied withglutamate at various concentrations, was also markedly enhancedby blue light. Respiration of the callus cells was not enhancedby blue light. A possible role of blue light in regulating ALAformation in callus cells is discussed. 1Dedicated to the late Professor Joji Ashida. (Received September 3, 1982; Accepted April 5, 1983)  相似文献   

18.
He ZH  Li J  Sundqvist C  Timko MP 《Plant physiology》1994,106(2):537-546
The effects of leaf developmental age on the expression of three nuclear gene families in pea (Pisum sativum L.) coding for enzymes of chlorophyll and heme biosynthesis have been examined. The steady-state levels of mRNAs encoding aminolevulinic acid (ALA) dehydratase, porphobilinogen (PBG) deaminase, and NADPH:protochlorophyllide reductase were measured by RNA gel blot and quantitative slot-blot analyses in the foliar leaves of embryos that had imbibed for 12 to 18 h and leaves of developing seedlings grown either in total darkness or under continuous white light for up to 14 d after imbibition. Both ALA dehydratase and PBG deaminase mRNAs were detectable in embryonic leaves, whereas mRNA encoding the NADPH:protochlorophyllide reductase was not observed at this early developmental stage. All three gene products were found to increase to approximately the same extent in the primary leaves of pea seedlings during the first 6 to 8 d after imbibition (postgermination) regardless of whether the plants were grown in darkness or under continuous white-light illumination. In the leaves of dark-grown seedlings, the highest levels of message accumulation were observed at approximately 8 to 10 d postgermination, and, thereafter, a steady decline in mRNA levels was observed. In the leaves of light-grown seedlings, steady-state levels of mRNA encoding the three chlorophyll biosynthetic enzymes were inversely correlated with leaf age, with youngest, rapidly expanding leaves containing the highest message levels. A corresponding increase in the three enzyme protein levels was also found during the early stages of development in the light or darkness; however, maximal accumulation of protein was delayed relative to peak levels of mRNA accumulation. We also found that although protochlorophyllide was detectable in the leaves immediately after imbibition, the time course of accumulation of the phototransformable form of the molecule coincided with NADPH:protochlorophyllide reductase expression. In studies in which dark-grown seedlings of various ages were subsequently transferred to light for 24 and 48 h, the effect of light on changes in steady-state mRNA levels was found to be more pronounced at later developmental stages. These results suggest that the expression of these three genes and likely those genes encoding other chlorophyll biosynthetic pathway enzymes are under the control of a common regulatory mechanism. Furthermore, it appears that not light, but rather as yet unidentified endogenous factors, are the primary regulatory factors controlling gene expression early in leaf development.  相似文献   

19.
Illumination of aetiolated maize at temperatures lower than20 °C results in negligible accumulation of chlorophyll.Illumination of leaf tissue, previously incubated in 10 molm–3 ALA in darkness, shows only a slight conversion ofprotochlorophyll(ide) to chlorophyll a and b at temperaturesless than 20 °C. A refined procedure for measuring photosynthesisby photo-acoustic spectroscopy in leaves that differ in chlorophyllcontent is presented. Studies of photosynthesis in aetiolatedseedlings illuminated at different temperatures by photo-acousticspectroscopy suggests that impairment of the chlorophyll pathwayis paralleled by an aberrant development of the thylakoid membrane. Key words: Protochlorophyll(ide), temperature, photo-acoustic spectroscopy, membrane biogenesis  相似文献   

20.
The accumulation of δ-aminolevulinic acid (ALA) was studied in greening maize (Zea mays) leaves which were transferred to darkness and reilluminated after various periods of time. The system synthesizing ALA decays in the dark with a half-life of about 80 minutes. The onset of enzyme decay after transfer to darkness shows a 40-minute lag. The accumulation of ALA in the presence of levulinic acid in leaves transferred to darkness corresponds to that expected from the estimated half-life of the enzyme synthesizing ALA. On the other hand, the accumulation of protochlorophyll upon transfer to darkness in the absence of levulinic acid stops much earlier. It is suggested that a control point exists in the pathway between ALA and protochlorophyll, preventing utilization of the accumulated ALA upon transfer of greening leaves to darkness. This is supported by the observed effects of low intensities of monochromatic light (648 nm) on ALA and chlorophyll accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号