首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imidazole fungicides such as imazalil, prochloraz, and triflurnizole and the triazole growth retardant paclobutrazol promote the shoot-inducing effect of exogenous cytokinins in Araceae, such as Spathiphyllum floribundum Schott and Anthurium andreanum Schott. The mechanism of their action could partially be based on the inhibition of gibberellic acid (GA) biosynthesis, because administration of GA3 inhibits the phenomenon completely in S. floribundum. Not only is the suppression of GA biosynthesis involved, but also the metabolism of endogenous cytokinins is significantly altered. Although the balance between isopentenyladenine, zeatin, dihydrozeatin, and their derivatives was shifted to distinguished directions by administration of BA and/or imazalil and/or GA3, no correlation between these changes in metabolic pathways and the number of shoots could be found. The metabolism of BA was not significantly altered by adding imazalil to the micropropagation medium of S. floribundum.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - [9R-5P]DHZ 9--d-ribofuranosyl-dihydrozeatin-monophosphate - [9R-5P]iP 6-isopentenyl-9--d-ribofuranosyladenine-monophosphate - [9R-5P]Z 9--d-ribofuranosyl-zeatin-monophosphate - [9G]BA 6-benzyl-9--d-glucopyranosyladenine - [9G]DHZ 9--d-glucopyranosyl-dihydrozeatin - [9G]iP 6-isopentenyl-9--d-glucopyranosyladenine - [9G]Z 9--d-glucopyranosyl-zeatin - [9R]BA 6-benzyl-9--d-ribofuranosyladenine - [9R]DHZ 9--d-ribofuranosyl-dihydrozeatin - [9R]iP 6-isopentenyl-9--d-ribofuranosyladenine - [9R]Z 9--d-ribofuranosyl-zeatin - BA 6-benzyladenine - DHZ dihydrozeatin - ES+ LC-MS/MS HPLC coupled Electrospray Tandem Mass Spectrometry - f.m. fresh mass - mT 6-(3-hydroxybenzyl)adenine - IMA imazalil - iP isopentenyladenine - NAA 1-naphthalene acetic acid - NFT Nutrient Film Technique - (OG)[9R]DHZ O--glucopyranosyl-9--d-ribofuranosyl-dihydrozeatin - (OG)[9R]Z O--d-glucopyranosyl-9--d-ribofuranosyl-zeatin - (OG)DHZ O--d-glucopyranosyl-dihydrozeatin - (OG)Z O--d-glucopyranosyl-zeatin - PAR Photosynthetic Active Radiation - PBZ paclobutrazol - PRO prochloraz - TDZ thidiazuron - TRI triflurnizole - Z zeatin  相似文献   

2.
N-acetylhexosaminidase fromNocardia orientalis catalysed the synthesis of lacto-N-triose II glycoside (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OMe,3) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OMe (4) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OMe (5) throughN-acetylglucosaminyl transfer fromN,N-diacetylchitobiose (GlcNAc2) to methyl -lactoside. The enzyme formed the mixture of trisac-charides3, 4 and5 in 17% overall yield based on GlcNAc2, in a ratio of 20:21:59. Withp-nitrophenyl -lactoside as an acceptor, the enzyme also producedp-nitrophenyl -lacto-N-trioside II (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p,6) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p (7) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OC6H4NO2-p (8). In this case, when an inclusion complex ofp-nitrophenyl lactoside acceptor with -cyclodextrin was used, the regioselectivity of glycosidase-catalysed formation of trisaccharide glycoside was substantially changed. It resulted not only in a significant increase of the overall yield of transfer products, but also in the proportion of the desired compound6.Abbreviations GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1-4)-2-acetamido-2-deoxy-d-glucose - NAHase N-acetylhexosaminidase - -CD -cyclodextrin  相似文献   

3.
A Gal1-4GlcNAc (2-6)-sialyltransferase from human liver was purified 34 340-fold with 18% yield by dye chromatography on Cibacron Blue F3GA and cation exchange FPLC. The enzyme preparation was free of other sialyltransferases. It did not contain CMP-NeuAc hydrolase, protease, or sialidase activity, and was stable at –20°C for at least eight months. The donor substrate specificity was examined with CMP-NeuAc analogues modified at C-5 or C-9 of theN-acetylneuraminic acid moiety. Affinity of the human enzyme for parent CMP-NeuAc and each CMP-NeuAc analogue was substantially higher than the corresponding Gal1-4GlcNAc (2-6)-sialyltransferase from rat liver.Abbreviations FPLC fast protein liquid chromatography - NeuAc 5-N-acetyl-d-neuraminic acid - 9-amino-NeuAc 5-acetamido-9-amino-3,5,9-trideoxy-d-glycero-2-nonulosonic acid - 9-acetamido-NeuAc 5,9-diacetamido-3,5,9-trideoxy-d-glycero--d-2-nonulosonic acid - 9-benzamido-NeuAc 5-acetamido-9-benzamido-3,5,9-trideoxy-d-glycero--d-galacto-2-nonulosonic acid - 9-fluoresceinyl-NeuAc 9-fluoresceinylthioureido-NeuAc - 5-formyl-Neu 5-formyl--d-neuraminic acid - 5-aminoacetyl-Neu 5-aminoacetyl--d-neuraminic acid - CMP-NeuAc cytidine-5-monophospho-N-acetylneuraminic acid - GM1 Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc-ceramide - ST sialyltransferase - DTE 1,4-dithioerythritol Enzyme: Gal1-4GlcNAc (2-6)-sialyltransferase, EC 2.4.99.1.  相似文献   

4.
-d-Glucosidase, -d-fucosidase -d-xylosidase, and -cellobiopyranosidase activities in Caecomyces communis, Neocallimastix frontalis, and Piromyces rhizinflata, located with fluorescent conjugates, occur throughout the whole thallus as from zoospore germination and disappear before sporulation. -d-Galactosidase and -l-arabinopyranosidase activities are low or nonexistent. A xylanase, detected by indirect immunofluorescence, was observed at the surface of the vegetative cells, vesicles, or rhizoids. Cross-reactions prove the existence of analogies in structure among the enzymes of these anaerobic gut fungi.  相似文献   

5.
Zusammenfassung Verglichen mit 1- und 2-Naphthyl--d-glucosid,--d-galactosid,--d-glucuronid,--d-N-acetylglucosaminid,--d-glucosid,--d-galactosid und--d-mannosid werden 1- und 2-Naphthyl--l-fucosid schneller oder im gleichen Ausmaß von Homogenaten verschiedener Rattenorgane hydrolysiert. Trotzdem fällt der histochemische Nachweis der -l-Fucosidasen methodenunabhängig im Gegensatz zu dem der anderen Glykosidasen überwiegend negativ aus. Ursache dafür ist die massive Hemmung der -l-Fucosidase durch Aldehydfixation und Diazoniumsalze; die Inhibitionsrate liegt bei 90% bzw. zwischen 85 und 98%; die - und -d-Glucosidase, - und -d-Galactosidase, -d-Mannosidase, -d-Glucuronidase sowie -d-N-Acetylglucosaminidase werden durch Aldehydfixation oder Kuppler höchstens zu 70% gehemmt. Daher können 1- und 2-Naphthyl--l-fucosid für die histochemische Darstellung der -l-Fucosidase nicht einschränkungslos empfohlen werden. Kleine Mengen Dimethylformamid hemmen die meisten Glykosidasen nicht.Für biochemische Messungen der -l-Fucosidase eignet sich speziell 1-Naphthyl--l-fucosid und läßt sich an Stelle von p-Nitrophenyl--l-fucosid werwenden. Bei der fluorometrischen Untersuchung der -l-Fucosidase in Rattenorganen mit dem 2-Naphthylderivat ergeben sich bemerkenswerte Aktivitätsunterschiede.
Suitability of naphthyl--l-fucosides for the investigation of -l-fucosidases
Summary In comparison with 1- and 2-naphthyl -d-glucoside, -d-galactoside, -d-glucuronide, -d-N-acetylglucosaminide, -d-glucoside, -d-galactoside and -d-mannoside 1- and 2-naphthyl -l-fucoside are hydrolyzed more quickly or to the same extent by homogenates prepared from freezedried cryostate sections of various rat organs. Nevertheless, when the fucosides are employed for the histochemical demonstration of -l-fucosidase mostly negative data were obtained independent on the method used, whereas all other naphthyl glycosides deliver positive results. The reasons for these discrepancies are the marked inhibition of -l-fucosidase by aldehyde fixation and diazonium salts. Then, -l-fucosidase activity is suppressed to 90% and between 85 and 98% respectively; the inhibition of - and -d-glucosidase, - and -d-galactosidase, -d-mannosidase, -d-glucuronidase and -d-N-acetylglucosaminidase by the fixative or coupling reagent does not exceed 70%. Therefore 1- and 2-naphthyl -l-fucoside cannot be recommended in general for histochemical purposes. Small amounts of dimethylformamide do not influence the activity of most of the glycosidases investigated.For biochemical measurements, however, especially 1-naphthyl -l-fucoside represents a suitable alternative in a fluorometric procedure instead of p-nitrophenyl -l-fucoside used for the photometric evaluation of -l-fucosidase. With the fluorometric method the enzyme was measured in rat organs, which posses remarkably different activities of -l-fucosidase.
  相似文献   

6.
P. Bucheli  M. Dürr  A. J. Buchala  H. Meier 《Planta》1985,166(4):530-536
Cotton fibres possess several -glucanase activities which appear to be associated with the cell wall, but which can be partially solubilised in buffers. The main activity detected was that of an exo-(13)--d-glucanase (EC 3.2.1.58) but which also had the characteristics of a -glucosidase (EC 3.2.1.21). Endo-(13)--d-glucanase activity (EC 3.2.1.39) and much lower levels of (14)--d-glucanase activity were also detected. The exo-(13)--glucanase showed a maximum late on (40 days post-anthesis) in the development of the fibres, whereas the endo-(13)--glucanase activity remained constant throughout fibre development. The -glucanase complex associated with the cotton-fibre cell wall also functions as a transglucosylase introducing, inter alia, (16)--glucosyl linkages into the disaccharide cellobiose to give the trisaccharide 4-O--gentiobiosylglucose.Abbreviations CMC carboxymethylcellulose - ONPG o-nitrophenyl--d-glucopyranoside - TLC thin-layer chromatography Presented at the Third Cell Wall Meeting held in Fribourg in 1984  相似文献   

7.
A newly isolated strain, MU-2, which produces very high -fructofuranosidase activity, was identified asAspergillus japonicus. For enzyme production by the strain, sucrose at 20% (w/v) was the best carbon source and yeast extract at 1.5 to 3% (w/v) the best nitrogen source. Total enzymatic activity and cell growth were at maximum after 48 h, at 1.57×104 U/flask and 0.81 g dry cells/flask, respectively. The optimum pH value of the enzymatic reaction was between 5.0 and 5.5 and the optimum temperature 60 to 65°C. The enzyme produced 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose by fructosyl-transferring activity. The strain was found to be very useful for industrial production of -fructofuranosidase.  相似文献   

8.
Negative-ion fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from heparin and heparan sulfate. The positional isomers of the sulfate group of monosulfated disaccharides were distinguished from each other by negative-ion fast atom bombardment tandem mass spectra, which provide an easy way of identifying the positional isomers. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of di- and trisulfated disaccharides.Abbreviations FABMS fast atom bombardment mass spectrometry - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - UA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - Hep heparin - HS heparan sulfate - UA(14) GlcNAc 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNAc 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcN6S 2-amino-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcN 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcN6S 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcNS 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNS 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(13)GalNAc 2-acetamido-2-deoxy-3-O-(-d-Gluco-4-enepyranosyluronic acid)-d-galatose - UA(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S(13)GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA(13)GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA(13)GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose.  相似文献   

9.
Summary The disaccharides formed by enzymatic transfer of the -D-galactopyranosyl residue fromo-nitrophenyl -d-galactopyranoside to -d-xylopyranosides have been identified. The influence of different factors on the yields of the disaccharides obtained was evaluated. Significant changes in selectivity were observed when -galactosidase fromE. coli was used instead of -galactosidase fromA. oryzae.  相似文献   

10.
On aerobic incubation of rat cerebral cortex slices with anomers ofd-glucose and with 2-deoxy-d-glucose (2DG) for 5 min, the disappearance of -d-glucose from the incubation mixture was greater than that of -d-glucose and both anomers had a greater rate of disappearance than that of 2DG. In addition, there were significantly greater consumption of oxygen and production of lactate with the -anomer than with the -anomer. In similar experiments with3H-labeledd-glucose anomers and [1-3H]-3-O-methyl-d-glucose (3MG), the accumulation of [1-3H]--d-glucose (up to 5 min) by rat cerebral cortex slices was greater than that of [1-3H]--d-glucose. Although initially lower than that of the anomers, the accumulation of [1-3H]-3MG increased at a greater rate and, by 5 min of incubation, was greater than that of both glucose anomers. This preferential accumulation was seen to disappear when the slices were preincubated with 2DG (hexokinase inhibitor) or when the temperature of incubation was reduced to 20°C. Under those conditions the data with the glucose anomers were similar to those obtained with 3MG. Our data then suggested that the greater accumulation of -d-glucose than of -d-glucose by the slices was probably not due to differences in transport through brain cell membranes but rather to the preferential metabolism of the -d-glucose.  相似文献   

11.
Adult snails synthesize in their albumen glands a storage polysaccharide called galactan which is utilized by the developing embryos. With [6-3H]-uridine 5diphosphogalactose the incorporation of labelled d-galactose into the polysaccharide can be traeed in freshly removed glands maintained in a bathing buffer. After centrifugation of homogenized glands, galactosyltrasferase activity is only found in the insoluble fraction. Chaps extracts of this material retain almost all of their activity and can be used for comparison of the incorporation rates into different native galactans or in various oligosaccharides. A highly efficient -(16) galactosyltransferase was detected when methyl 3-O-(-d-galactopyranosyl)--d-galactopyranoside was offered as acceptor. The substitution at the penultimate residue resulted in a branched trisaccharide as demonstrated by 1H-NMR-spectroscopy and permethylation analysis of the reaction product. Comparable results were obtained with various oligosaccharides containing an internal galactose unit glycosidically linked 13. Attempts to separate and purify the various enzymes involved resulted in the isolation of a fraction which is able to transfer d-Gal exclusively to native galactan, but not to oligosaccharides. A further fraction was obtained from a different resin with activity for native galactan and 6-O-(-d-galactopyranosyl)-d-galactopyranose. but without any for methyl-3-O-(-d-galactopyranosyl)--d-galactopyranose. It is thus concluded that at least three different enzymes are involved in the biosynthesis of this snail galactan.Abbreviation Gal galactose - glc gas-liquid chromatography - Gro glycerol - tlc thin layer chromatography  相似文献   

12.
-Fructofuranosidase from Aspergillus japonicus MU-2, which produces fructo-oligosaccharides (1-kestose: O--D-fructofuranosyl-(2 1)--D-fructofuranosyl -D-glucopyranoside); and nystose: O--D-fructofuranosyl-(2 1)--D-fructofuranosyl-(2 1)--D-fructofuranosyl -D-glucopyranoside) from sucrose, was immobilized, covalently with glutaraldehyde onto alkylamine porous silica, at high efficiency (64%). Optimum pore diameter of porous silica for immobilization of the enzyme was 91.7 nm. After immobilization, the enzyme's stabilities to temperature, metal ions and proteolysis were improved, while its optimum pH and temperature were unchanged. The highest efficiency of continuous production of fructo-oligosaccharides (more than 60%), using a column packed with the immobilized enzyme, was obtained at 40% to 50% (w/v) sucrose. The half-life of the column during long-term continuous operation at 55°C was 29 days.  相似文献   

13.
The synthesis of the methyl - and -N-dansyl-d-galactosaminides is described using methyl ,-2-azido-2-deoxy-d-galactopyranoside as starting material. This was reduced to the corresponding methyl ,-2-amino-2-deoxy-d-galactopyranoside and then treated with dansyl chloride to yield a mixture of methyl ,-N-dansyl-d-galactosaminides which was separated into individual anomeric forms by flash chromatography on silica gel. Methyl -N-dansyl-d-galactosaminide was used as a fluorescent indicator ligand in continuous substitution titrations to determine the association constants of nonchromophoric carbohydrates with theN-acetyl-d-galactosamine specific lectin fromErythrina corallodendron.Abbreviations ECorL Erythrina corallodendron lectin - MeGalNDns methyl 2-deoxy-2-(5-dimethylamino-1-naphthalenesulfamido)--d-galactopyranoside - MeGalNDns methyl 2-deoxy-2-(5-dimethylamino-1-naphthalenesulfamido)--d-galactopyranoside Dedicated to Hilde De Boeck (1958–1991).  相似文献   

14.
Summary Enzymic saccharification of Eucalyptus regnans pulps pretreated by autohydrolysis-steam explosion resulted in low cellulose conversions into glucose when using trichodermal cellulase preparations. The reduced levels of glucose were attributable to the production of compounds during enzymic hydrolysis which were inhibitory to -d-glucosidase of Trichoderma reesei C-30 and in Meicelase, but not to the cellulases. Aspergillus niger -glucosidase was not inhibited, nor were -d-xylosidase(s) and 1,4--d-xylanase(s). The inhibitory compound(s) could be extracted from the enzymic hydrolyzates with ethyl acetate. The ethyl acetate extractives inhibited -glucosidase in a competitive manner, and inhibitory action was not affected by pH. Addition of the inhibitory compound(s) to trichodermal cellulase digests of cellulose resulted in reduced glucose yields compared to a control. The inhibitory effects could be overcome when cellulase digests were supplemented with A. niger -glucosidase resulting in higher cellulose-to-glucose conversions. The inhibitory compound(s) were localized mainly in the heartwood of E. regnans. An inhibitor compound of this type has not hitherto been reported. The presence of inhibitory compound(s) in the autohydrolysis liquor fraction is also reported.  相似文献   

15.
A simple synthesis of octyl 3,6-di-O-(-d-mannopyranosyl)--d-mannopyranoside is described. The key features of the synthetic scheme are the formation of the -mannosidic linkage by 1-O-alkylation of 2,3,4,6-tetra-O-acetyl-,-d-mannopyranose with octyl iodide and glycosylation of unprotected octyl -d-mannopyranoside using limiting acetobromomannose. The trisaccharide is shown to be an acceptor forN-acetylglucosaminyltransferase-I with aK M of 585 µm.  相似文献   

16.
Summary Galactans, the storage polysaccharides in the perivitelline fluid of many snails showed a high degree of species-specificity as revealed by quantitative precipitin formations with lectins, polyclonal antisera, myeloma proteins as well as by the reactivity with the enzyme galactose oxidase. However, their chemical compositions were remarkably similar since thed-Gal residues were all linked 13 and 16 glycosidically.The specificity seemed to be related to the different degrees of branching in the various galactans but could also be due to some other minor constituents in some galactans such asl-galactose or phosphate.In this study a Radioimmunoassay was developed using the galactan of the snailLymnaea stagnalis to elucidate those differences which were only related to a unique distribution of the 13 and 16 linkages, since this galactan was composed exclusively ofd-galactose residues. The galactan was labeled by sequential oxidation with galactose oxidase and reduction with tritiated sodium borohydride. Inhibition of the binding of the labeled galactan to insolubilized antibodies was investigated by galactans of different species, their chemically modified products, andd-galactose-composed oligosaccharides of unambiguously identified structures.Inhibition byLymnaea stagnalis galactan was about 45 000 times that ofHelix pomatia galactan. The most complementary oligosaccharide found was -d-Gal13[-d-Gal16]-d-Gal11l-Gro, being about 200 times more effective thand-Gal. However, a fraction with molecular weights between 700 and 1000 isolated from the partially hydrolized galactan was still seven times more effective. From the reactivity of the antiserum with the different oligosaccharides tested the following structure was inferred which most likely represented the complete determinant recognized by the antiserum: -d-Gal13[-d-Gal16]-d-Gal16[-d-Gal13]-d-Gal1. This determinant seemed to be most common inLymnaea stagnalis galactan and its frequency of occurrence appears to correspond to the inhibitory potency of other snail galactans.  相似文献   

17.
-Fructofuranosidase fromAspergillus japonicus, which produces 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose, was purified to homogeneity by fractionation with calcium acetate and ammonium sulphate and chromatography with DEAE-Cellulofine and Sephadex G-200. Its molecular size was estimated to be about 304,000 Da by gel filtration. The enzyme was a glycoprotein which contained about 20% (w/w) carbohydrate. Optimum pH for the enzymatic reaction was 5.5 to 6. The enzyme was stable over a wide pH range, from pH 4 to 9. Optimum reaction temperature for the enzyme was 60 to 65°C and it was stable below 60°C. The Km value for sucrose was 0.21m. The enzyme was inhibited by metal ions, such as those of silver, lead and iron, and also byp-chloromercuribenzoate.  相似文献   

18.
Summary Two extracellular -glucosidases (EC 3.2.1.21) were isolated from Aspergillus niger USDB 0827 and A. niger USDB 0828, and their physical and kinetic properties studied. Both enzymes were very similar in terms of molecular size (230000 Da), pH optimum (pH 4.6), temperature optimum (65° C), stability at high temperatures and substrate preferences. They were capable of hydrolysing -linked disaccharides, phenyl -d-glucoside, p-nitrophenyl -d-glucoside (PNPG), o-nitrophenyl -d-glucoside, salicin and methyl -d-glucoside but lacked activity towards -linked disaccharides, a range of p-nitrophenyl monoglycosides and p-nitrophenyl diglycosides. Both -glucosidases were better at hydrolysing cellobiose than cellotriose, cellotetraose or cellopentaose. For both enzymes, glucose showed competitive inhibition with PNPG as substrate but had no effect with cellobiose. However, the two -glucosidases differed in inhibition by glucono-1,5-lactone and affinity for cellobiose. -Glucosidase from A. niger USDB 0827 also gave lower specific activity, and was more susceptible to metal ions (Ag+, Fe2+ and Fe3+) inhibition than that of A. niger USDB 0828. Correspondence to: Y. K. Hoh  相似文献   

19.
Transmannosylation from mannotriose (Man1-4Man1-4Man) to the 4-position at the nonreducing end N-acetylglucosaminyl residue ofN,N-diacetylchitobiose was regioselectively induced through the use of -d-mannanase fromAspergillus niger. The enzyme formed the trisaccharide Man1-4GlcNAc1-4GlcNAc (3.7% of the enzyme-catalysed net decrease ofN,N-diacetylchitobiose) from mannotriose as a donor andN,N-diacetylchitobiose as an acceptor. Mannobiose (Man1-4Man) was also shown to be useful as a donor substrate for the desired trisaccharide synthesis.Abbreviations Man d-mannose - (M n) (n=1–5) -linkedn-mer of mannose - GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1–4)-2-acetamido-2-deoxy-d-glucose  相似文献   

20.
We measured the activity of several acid hydrolases in oligodendrocyte and mixed glial (predominantly astrocytic) cell cultures prepared from neonatal rat cerebra. When compared with the mixed glial cultures, the cultured oligodendrocytes exhibited higher levels for all the hydrolases when activities were normalized to protein content. When enzymic activities were examined as a function of DNA content, oligodendrocytic -l-fucosidase, -d-glucuronidase, arylsulfatase, and N-acetyl--d-glucosaminidase were higher than in mixed glial cultures, whereas the activities of -d-glucosidase, -d-galactosidase and acid phosphatase were not elevated. These differences could not be accounted for by the fetal bovine serum present in the culture medium. The enrichment in acid hydrolase specific activities in the oligodendrocytes may be associated with a rapid turnover of at least some of the extensive myelin-like membranes formed by these cultured cells. Alternatively, the enrichment of acid hydrolase activity in the oligodendrocytes may be associated with intracellular vesicles of lysosomal origin which may play a role in myelin-like membrane assembly. Exactly which of the above two processes, or possible combinations thereof, is responsible for the present finding is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号