首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
烟夜蛾雄蛾性附腺因子对雌蛾性信 息素合成的抑制作用   总被引:8,自引:0,他引:8  
烟夜蛾Helicoverpa assulta处女蛾在交配后1 h,其性信息素滴度即显著降低,72 h内未见恢复。生测结果表明,烟夜蛾性信息素合成抑制因子主要来源于雄蛾性附腺。不同日龄雄蛾性附腺提取物的抑制活性无显著差异。光暗期对其活性具显著影响,暗期中雄蛾的性附腺物质对雌蛾性信息素合成具有较强抑制作用,而光期中雄蛾的性附腺物质不具抑制活性。在暗期的不同时间处理,对处女蛾性信息素合成的抑制作用无显著差异。雄蛾性附腺提取物对雌蛾性信息素合成的抑制作用与注射剂量有明显的相关性,0.2 ME(雄蛾当量)是产生显著抑制作用的最小剂量。对交配雌蛾注射性信息素生物合成激活神经肽(PBAN)提取物后,其性信息素合成又可恢复,这说明雌蛾交配后,性信息素滴度降低的原因是由于缺少了PBAN的调控。  相似文献   

2.
Insecticides can affect the complex coordination of activities associated with reproduction through their sublethal impact on the nervous system. Our objective was to document the effects of a sublethal dose (1% mortality) of chlordimeform on reproductive events in the female cabbage looper moth, Trichoplusia ni. A significantly higher percentage of females treated with chlordimeform initiated calling at some time during the scotophase. Chlordimeform stimulated pheromone emission early in the scotophase. However, late in the scotophase pheromone emission was significantly lower in chlordimeform-treated females when compared with control females. Overall, a lower amount of pheromone was detected in glands of chlordimeform-treated females. This effect was significant only during the second half of the scotophase. We suggest that chlordimeform stimulates pheromone transport to the gland surface and calling behavior resulting in depletion of pheromone reserves over the course of the scotophase. Chlordimeform also decreased the mating success of males. Oviposition and egg hatch were also affected by chlordimeform. Mated females treated with chlordimeform laid significantly fewer eggs than acetone-treated females. In addition, hatchability of eggs laid by mated female T. ni treated with chlordimeform was significantly lower than for eggs laid by control females.  相似文献   

3.
Abstract:  Calling behaviour, diel periodicity, and effect of age and mating on female sex pheromone titre in Estigmene acrea (Drury) were studied under laboratory conditions. Forty-five per cent of females started calling during the first scotophase, but the highest number of calling females was observed during the second, third and fourth scotophases. Calling behaviour occurred from the third hour after dark until just before the end of the scotophase. However, females exhibited a bimodal pattern of calling with the first peak occurring between 4 and 6 h and a second peak at 10 h after the onset of scotophase. The mean onset of calling time differed significantly with age. Older females showed a tendency to call longer, but there was no significant difference. The amount of (Z,Z)-3,6-cis-9, 10-epoxyheneicosadiene in females was quantified from the first scotophase following emergence, until the fifth scotophase. Glands of 0-day-old females presented a higher content of pheromone compared with that found in glands of 1-, 2-, 3- and 4-day-old females. Pheromone titre was determined at 2-h intervals throughout the third scotophase and photophase. (Z,Z)-3,6-cis-9,10-epoxyheneicosadiene was found in the gland during the scotophase as well as the photophase. However, there was no consistent pattern of pheromone production throughout the scotophase or photophase. Mated females of E. acrea produced significantly less pheromone than virgin females.  相似文献   

4.
【目的】探索大螟Sesamia inferens性信息素顺11-十六碳烯乙酸酯(Z11-16∶Ac)和顺11-十六碳烯醇(Z11-16∶OH)的合成和释放及求偶和交配行为的昼夜节律,及其与田间性信息素诱捕的关系。【方法】通过溶剂浸提和固相微萃取(solid phase microextraction, SPME)分析大螟雌蛾性信息素Z11-16∶Ac和Z11--16∶OH的滴度,结合行为观测和多地田间实时性信息素诱捕数据,调查大螟性信息素的生物合成、释放及求偶和交配行为的昼夜节律。【结果】大螟雌蛾腺体内性信息素Z11-16∶Ac和Z11-16∶OH含量可检测到的时间始于暗期前1 h,暗期后4 h快速增加,暗期8 h为第1次高峰,但光期1h又一次高峰,光期5 h还可以被显著检测到。分泌至腺体外的性信息素化合物可检测到的时间始于暗期后6 h,高峰期在暗期后10 h,光期后1 h性信息素Z11-16∶Ac滴度达到96.9±20.9 ng/雌。采用溶剂浸提法获得的Z11-16∶Ac和Z11-16∶OH的比例在暗期平均为2.8±1.9,在光期平均为2.5±0.9,统计上二者没有显著差异,而SPME法获得的Z11-16∶Ac和Z11-16∶OH的比例在暗期平均为8.5±1.2,在光期平均为5.7±0.6,统计上二者差异显著。产卵器伸出时间发生在暗期6-8 h,产卵器伸出持续时间平均为80.8±4.4 min。大螟的交配发生在暗期4-10 h,交配持续时间平均为83.4±5.0 min。广东、四川、浙江、江苏四省性诱自动计数的田间每日每小时实时计数数据显示,越冬代诱蛾比较集中,之后的世代则比较分散,田间雄蛾的性诱昼夜节律受地理环境、季节和世代等因子的影响。【结论】本研究发现大螟交配和性信息素释放的昼夜节律在时间上不一致,交配时间在暗期较早时段。雌蛾性信息素有效的释放时间范围比雄蛾对性信息素反应的要小。产卵器伸展与雌蛾性信息素化合物的释放速率加快和扩散 范围有关。  相似文献   

5.
Insect males produce accessory gland (MAG) factors that are transferred in the seminal fluid to females during copulation, and elicit changes in the mated female's behavior and physiology. Our previous studies showed that the injection of synthetic Drosophila melanogaster sex-peptide (DrmSP) into virgin females of the moth Helicoverpa armigera causes a significant inhibition of pheromone production. In this and other moth species, pheromone production, correlated with female receptivity, is under neuroendocrine control due to the circadian release of the neuropeptide PBAN. In this study, we show that PBAN, present in the hemolymph during the scotophase in females, is drastically reduced after mating. We also identify 4 DrmSP-like HPLC peaks (Peaks A, S1, S2, and B) in MAGs, with increasing levels of DrmSP immunoreactivity during the scotophase, when compared to their levels observed during the photophase. In H. armigera MAGs, a significant reduction in the pheromonostatic peak (Peak B) was already evident after 15 min of copulation, and depletion of an additional peak (Peak S2) was evident after complete mating. Peak A is also detected in female brains, increasing significantly 1 h after mating, at which time inhibition of pheromone biosynthesis also occurs. However, changes corresponding to the other MAG peaks were not detected in mated female tissues.  相似文献   

6.
Virgin German cockroach females, Blattella germanica(L.), were observed, for the first time, to exhibit a characteristic calling behavior during which females emit a volatile sex pheromone. Under a photoperiod of 12L12D, the percentage of 7-day-old virgin females that exhibited this behavior peaked before the end of the scotophase in a similar pattern to the diel periodicity of mating. A clear relationship was evident between calling and stages of sexual receptivity during successive gonotrophic cycles. Females initiated calling 5–6 days after the imaginal molt, when their basal oocytes were 1.6 mm long. If not mated, females continued to exhibit bouts of calling during the next 3–4 days until 24 h before ovulation. Calling was completely suppressed by mating as well as the presence of an egg case in the genital atrium in both virgin and mated gravid females. We suggest that calling and the emission of a volatile sex pheromone serve to attract males from a distance as well as to potentiate responses to contact sex pheromone in aggregations.  相似文献   

7.
褛裳夜蛾的交配行为及雄蛾对性腺提取物的反应节律   总被引:1,自引:0,他引:1  
详细观察了褛裳夜蛾成虫的交配行为,利用风洞、触角电位技术研究了雄蛾对性腺提取物的反应节律,通过林间诱蛾试验进行了验证,旨在为褛裳夜蛾性信息素的精确提取及性信息素组份分离、鉴定提供依据。研究结果表明:成虫的求偶、交配行为均发生在暗期,有一定的节律性:雌蛾在羽化3d以后开始求偶,1周左右表现最为强烈,3-4日龄雌蛾在暗期4-6h开始求偶,最大求偶率在暗期6-8h;5-9日龄在进入暗期就开始求偶,最大求偶率出现在暗期4-6h。风洞试验表明,3-7日龄的雄蛾对性腺提取物均有明显的性行为反应,5日龄雄蛾在暗期4-6h对性腺提取物的反应最为强烈。3-6日龄的成虫在暗期4-6h开始交配,而7-8日龄的成虫于暗期2-4h开始交配,6日龄的成虫交配率最高,交配高峰在暗期4-8h。雄蛾对性腺提取物的触角电位反应也有一定的节律性:雄蛾对4日龄雌蛾性腺提取物开始有电生理反应,对6-7日龄暗期5h性腺提取物反应最为强烈。林间诱蛾试验测定了性腺提取物的引诱活性,7日龄雌蛾性腺提取物林间诱蛾量最高,引诱高峰在暗期4-6h,该结果也验证了褛裳夜蛾雄蛾对性腺提取物的反应节律。  相似文献   

8.
A mating duration of more than 6 h was necessary to permanently terminate the production of the sex pheromone (bombykol) in the silkworm moth, Bombyx mori L. (Lepidoptera: Bombycidae), although the female formed a bursa copulatrix including a spermatophore and laid fertilized eggs even after mating for only 0.5 h. The 6-h mated female again produced bombykol if given an injection of synthetic pheromonotropic neuropeptide (PBAN), which is known to activate pheromone biosynthesis in a virgin female. Extracts of brain-suboesophageal ganglion (SG) complexes, which were removed from 6- and 24-h mated females, showed strong pheromonotropic activities. These results indicated that the pheromone gland of the mated female maintained its ability to biosynthesize bombykol; however, it could not produce pheromone due to a suppression of PBAN secretion from the SG. Furthermore, bombykol titers did not decrease after mating in females with a transected ventral nerve cord, even after the injection of a spermatophore extract, suggesting that the suppression of PBAN secretion was mediated by a neural signal and not by a substance in the spermatophore. The mated females accumulated (10E, 12Z)-10,12-hexadecadienoic acid, a precursor of bombykol biosynthesis, in their pheromone glands as did decapitated females. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Females of Mantis religiosa and Empusa pennata were video taped for several 24 h periods to determine if they showed behaviors associated with pheromone release. In the photophase the abdomen of both species was motionless and rested in continuous contact with the wings. However, at the beginning of the scotophase the females bent the abdomen ventrally so that the space between the abdomen and the wings increased significantly with respect to the daytime posture. Calling behavior (abdominal bending) was maintained throughout the 8 h scotophase and ended abruptly at lights on. Females of M. religiosa did not start calling until they were 30 days of age. Calling disappeared in mated females, but it reappeared two weeks later. Males stayed motionless in response to the odors emitted by other males or by noncalling females, but walked when a calling female was placed in the air flow. These observations suggest that female mantids bend their abdomens at night to release a sex pheromone. The adaptive function of nocturnal sex pheromone release in sexually cannibalistic species that rely strongly on visual cues for mating is discussed.  相似文献   

10.
The mating behaviour of the corn stalk borerSesamia nonagrioides (Lef.) [Lepidoptera:Noctuidae] was studied under laboratory conditions at 25 ± 1 °C, 65 ± 5% r.h. and 16:8 (L:D) regime. The females began calling during the first scotophase following emergence, the peak of calling occurred during the second scotophase and thereafter decreased. Maximum calling was observed between the fourth and sixth hour of the scotophase. The calling pattern varied with age. During the first and second scotophase most of the females were calling continuously, while during the third and fourth scotophase periodic calling was observed. The mean onset of calling was advanced and the mean length of calling per day was increased slightly as the female became older. Females held for 72 h in continuous darkness exhibited an endogenous circadian rhythm of calling. Matings began during the first scotophase following emergence and the peak of mating was observed during the second scotophase. Mated females did not remate. Few males mated more than once during the following scotophases.  相似文献   

11.
Previous studies demonstrate that virgin female adult Helicoverpa armigera (Lepidoptera: Noctuidae) moths exhibit calling behaviour and produce sex pheromone in scotophase from the day after emergence, and that mating turns off both of these pre-mating activities. In the fruit fly Drosophila melanogaster, a product of the male accessory glands, termed sex peptide (SP), has been identified as being responsible for suppressing female receptivity after transfer to the female genital tract during mating. Juvenile hormone (JH) production is activated in the D. melanogaster corpus allatum (CA) by SP in vitro. We herein demonstrate cross-reactivity of D. melanogaster SP in the H. armigera moth: JH production in photophase virgin female moth CA in vitro is directly activated in a dose-dependent manner by synthetic D. melanogaster SP, and concurrently inhibits pheromone biosynthesis activating neuropeptide (PBAN)-activated pheromone production by isolated pheromone glands of virgin females. Control peptides (locust adipokinetic hormone, AKH-I, and human corticotropin, ACTH) do not inhibit in vitro pheromone biosynthesis. Moreover, SP injected into virgin H. armigera females, decapitated 24 h after eclosion, or into scotophase virgin females, suppresses pheromone production. In the light of these results, we hypothesize the presumptive existence of a SP-like factor among the peptides transmitted to female H. armigera during copulation, inducing an increased level of JH production and depressing the levels of pheromone produced thereafter.  相似文献   

12.
豆野螟成虫行为学特征及性信息素产生与释放节律   总被引:7,自引:0,他引:7  
豆野螟Maruca vitrata (Fabricius)是一种严重的泛热带豆类蔬菜害虫。本文在(29±1)℃、相对湿度75%~80%、光周期14L∶10D条件下研究了豆野螟成虫的羽化、交尾行为以及雌蛾性信息素的释放节律。结果表明:其羽化行为全天可见,在雌蛾中,86%于暗期羽化; 在雄蛾中,73%于暗期羽化。雌雄蛾羽化行为在暗期第4、5和8 h差异达到显著 (t>4; P<0.05)。交尾活动发生在暗期19:00到5:00之间,交尾持续时间最短约为20 min,最长约为90 min,3日龄进入暗期第5 h具有最高的交尾率。1、6和7日龄成虫具有单个交尾高峰,2到5日龄成虫具有两个交尾高峰。同一日龄成虫交尾在暗期前半段平均花费的时间要明显高于在后半段花费的时间。低龄和高龄的成虫用于交尾的时间明显高于中龄的性成熟成虫。成虫的开始交尾时间随着日龄的增加逐渐前移。雄蛾对进入暗期后第5 h和第9 h处女雌蛾的性腺提取物和空气收集性信息素的触角电位反应最强,对 3日龄处女雌蛾的性腺提取物和空气收集性信息素的触角电位反应最强。处女雌蛾田间诱蛾试验表明:23:00-01:00为诱蛾高峰期,3日龄处女雌蛾的诱蛾效果最好。该蛾的羽化、交尾及性信息素产生与释放均存在节律上的一致性。雌蛾的性信息素释放的时间较长,见于整个暗期,然而交尾行为发生时间较短,主要发生于两个交尾高峰之间。  相似文献   

13.
小木蠹蛾性行为和性信息素产生与释放的时辰节律   总被引:1,自引:0,他引:1  
张金桐  孟宪佐 《昆虫学报》2001,44(4):428-432
观察了小木蠹蛾Holcocerus insularis的性行为反应,并采用腺体提取、空气收集 、触角电位和田间试验等方法对雌蛾产生和释放性信息素的时辰节律进行了研究。结果表明: (1) 该虫羽化24 h后性成熟,婚飞和交配活动主要在1:00~4:00,交配历时15~45 min;(2) 大部分雌蛾一生交配1~3次,雄蛾多数一生只交配1次,雌雄比为1∶0.89; (3) 雌蛾腺体提取物中性信息素含量同蛾龄有关,2日龄雌蛾腺体性信息素含量最高;(4) 雌蛾腺体中性信息素含量在1:00时最高,而性信息素释放高峰在2:30。  相似文献   

14.
Abstract Beet armyworm (BAW), Spodoptera exigua, is becoming one of more and more serious pests in China in recent years. As a part of research program of sex pheromone and its application of BAW in China, the hourly and daily variation of calling behavior and pheromone production of BAW females were investigated. Both calling behavior and titers of 4 sex pheromone components showed distinct diel rhythms, and the two peak periods were synchronous. In comparison, the calling activity lasted shorter period of time with a longer peak time, whereas the production of the sex pheromone lasted throughout the whole scotophase and part of the photophase with a very short peak time. The calling behavior began at the middle scotophase, reached the maximum at the middle‐later scotophase, and continued the maximal calling activity until the end of the scotophase. When the light was on, the calling percentage reduced sharply, and all females stopped calling 1 hour later. The variation patterns of the 4 pheromone components in the glands of the 3 day old moths were similar from one to another. From 0.5 h before to 4.5 h into scotophase, the titers increased slightly, but at 6.5 h they showed a significant increase up to the peak values of the scotophase. Soon at 8.5 h into the scotophase, they decreased significantly and thereafter gradually to undetectable level at 4.5 h into the next photophase. The daily change experiment showed that BAW females began calling at 0 scotophase, became fully active in calling at 3rd scotophase, and maintained the calling activity to 7th scotophase. There was no significant difference in pheromone titers among different day‐old moths.  相似文献   

15.
In the spruce budworm, Choristoneura fumiferana, and the obliquebanded leafroller, C. rosaceana, mating significantly depressed pheromone production after 24 h. On subsequent days, the pheromone titre increased slightly in C. fumiferana, but not in C. rosaceana. No pheromonostatic activity was associated with male accessory sex gland (ASG) extracts, 20-hydroxy-ecdysone or hemolymph taken from mated females. However, pheromone production in mated females was not suppressed when the ventral nerve cord (VNC) was transected prior to mating, indicating that an intact VNC is required to permanently switch off pheromone production after mating. As suggested for other moth species, the presence of sperm in the spermatheca probably triggers the release of a signal, via the VNC, to inhibit pheromone production. The fact that in both species the brain-suboesophageal ganglion (Br-SEG) of mated females contains pheromonotropic activity and that their pheromone glands may be stimulated by the synthetic pheromone-biosynthesis-activating-neuropeptide (PBAN) or a brain extract supports the hypothesis that the neural signal prevents the release of PBAN into the hemolymph rather than inhibiting its biosynthesis. Therefore, we speculate that following the depletion of sperm in the spermatheca, the neural signal declines and is less effective in preventing the release of PBAN, thereby stimulating the resumption of pheromone production, as seen in mated C. fumiferana females. In a previous study, mating was shown to induce a significant rise in the juvenile hormone (JH) titre of both Choristoneura female moths, suggesting that post-mating pheromone inhibition may be under hormonal regulation. However, following topical applications or injections of the juvenile hormone analogue (JHA) and JH II into virgins, the pheromone only declined significantly 48 h after treatment in C. rosaceana. This suggests that the significant rise in the hemolymph JH titre after mating in C. rosaceana females plays a role in keeping the pheromone titre consistently low throughout their reproductive life. These findings will be discussed in relation to the different life histories of the two Choristoneura species.  相似文献   

16.
蜀柏毒蛾生殖行为及性信息素产生与释放节律   总被引:5,自引:0,他引:5  
为了探索蜀柏毒蛾Parocneria orienta Chao性信息素产生和释放规律, 为利用性信息素监测和防治蜀柏毒蛾奠定基础, 本研究在野外及室内温度22±1℃、 相对湿度75%~80%、 光周期14L∶10D条件下观察研究了蜀柏毒蛾成虫的羽化、 求偶、 交尾、 产卵行为, 触角电位反应测定处女雌蛾性信息素产生与释放的时辰节律。结果表明: 蜀柏毒蛾羽化行为全天可见, 主要集中在1:00-5:00, 占总羽化量的44.94%, 7:30-11:00进行婚飞和交尾, 交尾高峰期出现在8:30左右, 交配时间少则2 h, 多则8 h, 求偶、 交配均发生在光期。随着日龄的增加, 召唤时间前移并且延长, 1日龄的处女雌蛾交尾时间较短; 雌蛾羽化当天就可交尾, 2日龄雌蛾交尾率最高, 达36.67%。雌蛾分多处产卵, 雌蛾一生最高产卵量达402粒, 最低产卵量为78粒。羽化当天的雌蛾体内性信息素含量较低, 第2天最高, 以后逐日下降; 2日龄蜀柏毒蛾处女雌蛾性信息素的产生量从7:00起逐渐增加, 8:30-9:30时最高, 9:30后逐渐减小。雄蛾对处女雌蛾腺体提取物的触角电位反应在8:30-9:00最强, 说明8:30-9:00是雌蛾产生和释放性信息素的高峰期。蜀柏毒蛾的羽化、 求偶、 交尾及性信息素的产生与释放存在一定的时辰节律, 野外处女雌蛾诱蛾试验证实了性信息素释放与交配行为在时辰节律上的一致性。  相似文献   

17.
Mating in most species of insects leads to a transient or permanent loss in sexual receptivity of the females. Among moths, this loss of receptivity is often accompanied with a loss of the sex pheromone in the absence of calling, which also could be temporary or permanent. Most of the earlier work on changes in reproductive behavior after mating was done with Diptera in which sperm and/or male accessory gland secretions were shown to be responsible for termination of receptivity. In the corn earworm moth, Helicoverpa zea, mated females become depleted of pheromone and become nonreceptive to further mating attempts, but only for the remainder of the night of mating. A pheromonostatic peptide isolated from the accessory glands of males may be responsible for the depletion of pheromone, while the termination of receptivity is independently controlled. In the gypsy moth, Lymantria dispar, the changes in behavior following mating are permanent. In this species, the switch from virgin to mated behavior involves three steps: a physical stimulation associated with mating, transfer of viable sperm to the spermatheca, and commencement of oviposition. Signals generated by these factors operate through neural pathways and, unlike in H. zea, accessory gland factors seem not to be involved. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    18.
    A direct enzyme‐linked immunosorbent assay has been developed and applied to the analysis of PBAN immunoreactivity in female hemolymph of the cabbage armyworm, Mamestra brassicae. PBAN‐IR determinations have been carried out with third scotophase insects at different times of the photoperiod. The rhythm of calling and the pattern of pheromone production by third scotophase females at different times of the photoperiod have also been determined. PBAN‐IR and calling are well correlated. However, whereas pheromone titers decrease, both PBAN‐IR levels and percentage of calling females remain high in the last hours of the scotophase. These results are discussed in the context of the regulation of sex pheromone biosynthesis in M. brassicae. Arch. Insect Biochem. Physiol. 40:80–87, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

    19.
    Mating in moths is generally mediated by female-produced sex pheromones. Mating activity, female pheromone production/release and male pheromone responsiveness all show diurnal variations in many species. We found that the response of the male Egyptian cotton leafworm, Spodoptera littoralis, to sex pheromone gland extracts showed a diel rhythm in olfactometer tests, and the variation was persistent for at least 1 day in constant darkness. High male response to sex pheromone was correlated in time with high mating and locomotor activity. Male S. littoralis, maintained in constant darkness and exposed to pheromone gland extracts on a daily basis, showed an induced temporal variation in response after several days, in contrast to unexposed males. This suggests that in the absence of other external zeitgebers, exposure to sex pheromone may function to synchronise circadian behavioural rhythms in male moths. The daily rhythm in mating activity in S. littoralis is also shown to be persistent for at least 2 days in constant darkness. Pairs mated significantly less when either the male or female had been raised in a light:dark cycle 10 h out of phase, indicating that the proposed circadian rhythm in mating activity is composed of rhythmic mating preference/ability in both sexes.  相似文献   

    20.
    Electroantennogram (EAG) recordings showed that female Spodoptera exigua can detect their own sex pheromones (two single components and their mixture), displaying a similar dose–response pattern to that of males, although intensities of female responses were much less at all doses compared with males. Furthermore, the female calling behavior was inhibited and late-shifted by the presence of the female sex pheromone. When the pheromone components were presented, the calling female proportion in the peak calling period was significantly reduced and the calling peak time and calling termination time postponed, compared with controls. Although the calling behavior was inhibited, the pheromone titer of treated females was not different to the control, implying a reduced pheromone biosynthesis in the pheromone glands of treated moths. However, observations during the olfactometer experiments revealed that there were no obvious behavioral responses of females exposed to sex pheromone stimuli including whole gland extracts, 0.1, 1 or 10 μg binary pheromone mixtures.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号