首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Solitary parasitoids generally produce only one offspring per host. Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae) develops as an idiobiont ectoparasitoid on prepupae and pupae of primary aphid parasitoids inside the mummified aphid host. Females normally deposit a single egg but superparasitize when suitable hosts are scarce. We show that facultative gregarious development may occur but is constrained by resource competition between larvae. The probability of more than one offspring surviving increased with the intensity of parasitism; an age difference of ≤9 h between older and younger first instars did not promote gregarious development. Two female parasitoids and, rarely, up to three male parasitoids could develop together. Average body size in terms of dry mass did not differ between singly developing females and the combined mass of two females sharing host resources, but the combined mass of gregarious males was greater than that of their singly developing counterparts. Females were 3× more likely to eclose from single than gregarious mummies. The amount of host resources available per larva declines with increasing clutch size, in turn causing a corresponding reduction of adult size and size‐dependent fitness attributes. We suggest that competition for limiting host supplies may influence the transition from solitary to gregarious development and should be considered in models of clutch size evolution in parasitoid wasps.  相似文献   

2.
In solitary parasitoids, the mandibulate first instars behave aggressively towards potential competitors so that generally only one larva survives per host. A ‘failure of competition’ may result in facultative gregarious development, however. We used Ephedrus californicus Baker (Hymenoptera: Braconidae: Aphidiinae), a solitary koinobiont parasitoid of aphids, to test two hypotheses in the laboratory that could explain facultative gregarious development. Gregarious development increased with the intensity of parasitism, with two (rarely three) parasitoids successfully developing in a single aphid. In heavily superparasitized hosts, interference between surviving larvae often caused abnormal pupation behaviour and inability to emerge from the mummy. The hypothesis that the survival of more than one larva per host is dependent on differences in larval age was not supported. The total body size in terms of dry mass of two males or two females developing together in the same host was higher than that of same‐sex counterparts developing singly. Females were larger than males with which they shared a host. Hypotheses about the evolutionary transition from a solitary to a gregarious lifestyle in parasitoid Hymenoptera have focused on lethal fighting between first instars but have ignored other constraints including immature mortality during later development and limiting host resources. Especially in species that pupate inside the dead host, specific requirements for pupation and emergence may determine whether one or several offspring per host can develop to adult.  相似文献   

3.
1. Two basic tenets of competition among parasitoids, that taxonomically distinct parasitoids are unable to discriminate against hosts that have previously been attacked by a competitor and that previous parasitism reduces the quality of a host, were tested by monitoring the oviposition response of Hyssopus pallidus, a gregarious ectoparasitoid, to healthy codling moth larvae and codling moth larvae that had previously been parasitised by a solitary endoparasitoid, Ascogaster quadridentata. 2. Hyssopus pallidus accepted both categories of host larva for oviposition when its competitor was constrained as a first‐instar larva by the diapause development of its host, but discriminated against previously parasitised host larvae when its competitor was present as a larger larva in a non‐diapausing host. 3. Hyssopus pallidus distinguished between the two categories of host larva by allocating twice as many eggs to host larvae previously parasitised by A. quadridentata, a response that was not influenced by previous oviposition experience. 4. The larger clutch sizes allocated to previously parasitised host larvae produced twice as many female progeny, each of a typical size, such that the total biomass was twice that produced from the smaller clutches laid on healthy host larvae. Possible confounding influences of host age and diapause are discounted. 5. These results demonstrate that interspecific discrimination does occur in H. pallidus and that host quality can be improved through previous parasitism by an endoparasitoid. Although interspecific discrimination appears rare among insect parasitoids, it may have been overlooked among ectoparasitoids and requires examination of the fitness consequences of interspecific interactions to clarify its adaptive significance.  相似文献   

4.
Blaesoxipha atlanis (Aldrich) (Diptera: Sarcophagidae) is a common parasitoid of the grasshopper Melanoplus sanguinipes (F.) (Orthoptera: Acrididae) in western Canada. We tested the hypothesis that B. atlanis can develop as either a solitary or a gregarious parasitoid, and assessed the influence of parasitism on the growth and survival of infected grasshoppers. Males and females of M. sanguinipes were parasitized manually with one, two, or three first-instar larvae of B. atlanis in the laboratory. Parasitism was more deleterious to males than females of M. sanguinipes; females are larger than males. Host survival and longevity declined with the number of larvae per host in a sex-specific manner. In females, 39%, 24%, and 8% of hosts containing, respectively, one, two, and three sarcophagid larvae survived parasitism. Although 41% of single-parasitized males survived, all males containing more than one larva died. Variations in host quality as measured by dry mass explained much of the response to parasitism in male, but not female, hosts. Parasitoid larvae, apparently, did not cause significant physical damage to host organs and tissues but instead functioned as a metabolic sink. The greater metabolic activity associated with egg production could account for the relatively higher tolerance to parasitism of female, as opposed to male, grasshoppers. Developmental time, adult size, and percentage survival of B. atlanis declined with the intensity of parasitism, especially in parasitoids developing in male hosts. Females developing gregariously contained fewer ovarioles at eclosion than counterparts developing as solitary larvae. The mean body size of field-collected B. atlanis did not differ from that of laboratory-reared parasitoids developing singly in a host. Gregarious development is an alternative strategy to solitary development that may enable B. atlanis to maintain population numbers during periods of grasshopper scarcity.  相似文献   

5.
In intraspecific competition, the sex of competing individuals is likely to be important in determining the outcome of competitive interactions and the way exposure to conspecifics during development influences adult fitness traits. Previous studies have explored differences between males and females in their response to intraspecific competition. However, few have tested how the sex of the competitors, or any interactions between focal and competitor sex, influences the nature and intensity of competition. We set up larval seed beetles Callosobruchus maculatus to develop either alone or in the presence of a male or female competitor and measured a suite of traits: development time, emergence weight; male ejaculate mass, copulation duration, and lifespan; and female lifetime fecundity, offspring egg–adult survival, and lifespan. We found effects of competition and competitor sex on the development time and emergence weight of both males and females, and also of an interaction between focal and competitor sex: Females emerged lighter when competing with another female, while males did not. There was little effect of larval competition on male and female adult fitness traits, with the exception of the effect of a female competitor on a focal female's offspring survival rate. Our results highlight the importance of directly measuring the effects of competition on fitness traits, rather than distant proxies for fitness, and suggest that competition with the sex with the greater resource requirements (here females) might play a role in driving trait evolution. We also found that male–male competition during development resulted in shorter copulation times than male–female competition, a result that remained when controlling for the weight of competitors. Although it is difficult to definitively tease apart the effects of social environment and access to resources, this result suggests that something about the sex of competitors other than their size is driving this pattern.  相似文献   

6.
Adults of a stink bug,Megacopta punctissimum, form mating aggregations on their host plants, based on the gregarious habit of males. A female was released on a stem on which there was an aggregation of 2 mating pairs and 1 bachelor male. Next, the bachelor male was released on a stem on which no bugs were present, and the same female was released there. Sequences of courtship behavior were compared between them. This experiement was repeated for 41 pairs of males and females, and about half (20 cases) of these experiments were made in the reverse order. Males were the active sex in courtship, whilst females either accepted the courtship, or escaped from courting males. Females accepted courtship with a higher probability when males courted in aggregations (73%) compared to solitary conditions (22%). This was because the escape behavior of females from the males was reduced if females detected the presence of other bugs near the males. It was concluded that female choice is a selective force for gregariousness in males.  相似文献   

7.
Adaptiveness of sex ratio control by the solitary parasitoid wasp Itoplectis naranyae (Hymenoptera: Ichneumonidae) in response to host size was studied, by examining whether differential effects of host size on the fitness of resulting wasps are to be found between males and females. The offspring sex ratio (male ratio) decreased with increasing host size. Larger hosts yielded larger wasps. Male larvae were less efficient in consuming larger hosts than female larvae. No significant interaction in development time was found between parasitoid sex and host size. Larger female wasps lived longer than smaller females, while longevity of male wasps did not increase with increasing wasp size. Smaller males were able to mate either with small or with large females, while larger males failed to mate with small females. Larger female wasps had a greater number of ovarioles and mature eggs at any one time than smaller females, although the number of eggs produced per host-feeding was not influenced by female wasps. Thus, the differential effect of host size on the fitness of males and females exists in I. naranyae. The basic assumption of the host-size model was therefore satisfied, demonstrating that sex ratio control by I. naranyae in response to host size is adaptive.  相似文献   

8.
A strong relationship exists between body size and fitness in parasitoids. However, it is unclear whether the relationship is symmetric or asymmetric in males and females. The present study investigated the body size and fitness relationship in Diaeretiella rapae emerged from small and large nymphs of cabbage aphid Brevicoryne brassicae. A positive relationship existed between the size of the aphid host and growth of parasitoid larva developing in it. The fitness gain in males and females was not proportionate to their body size gain. Females mated with larger males produced 10?% more female offspring than females mated with smaller males. However, females that developed in large hosts produced 62?% more offspring (total male and female) than the females emerged from smaller hosts. The findings suggest that the number of offspring and the progeny sex ratio were affected by the body size of both male and female D. rapae.  相似文献   

9.
Abstract Parasitoids have long proven to be model organisms in studying resource‐related constraints on immature development. Here we examine the relationship between host cocoon (= pupal) size in the gregarious endoparasitoid wasp, Cotesia glomerata, and development time and adult size in the solitary idiobiont hyperparasitoid, Pteromalus semotus. Little is known about the biology or ecology of this ecto‐hyperparasitoid species, although it is one of the major secondary hyperparasitoids of C. glomerata. The size of the adult wasp covaried with the size of the host cocoon at parasitism. Moreover, female wasps were larger than male wasps for a given cocoon size. Adult wasps have remarkably long life‐spans, 3 months on average. Longevity did not significantly differ with sex. We also examined how larvae of P. semotus exclude other potential competitors. P. semotus is protandrous, with females taking significantly longer to complete their development than males. In experiments where several eggs of P. semotus were placed on individual pupae of C. glomerata, newly hatched hyperparasitoid larvae moved rapidly over the surface of the host and destroyed the eggs of any conspecifics by biting them before they would initiate feeding on host tissues. Our results are discussed in relation to those with other studies with solitary ichneumonid idiobiont hyperparasitoids of C. glomerata.  相似文献   

10.
Most insects harbour a community of parasitoids that coexist in spite of competition for resources. One potential mechanism for coexistence of competitors is a tradeoff between dispersiveness and local competitive ability. Here we present a study of competition between the specialized parasitoids Hyposoter horticola and Cotesia melitaearum sharing the Glanville fritillary butterfly, Melitaea cinxia . Within one host generation, the parasitoid larvae interact inside the host during each of the three C. melitaearum generations. We founds that in the summer when the host is small, the solitary H. horticola is the superior competitor, suppressing the gregarious C. melitaearum as eggs or small larvae. When multiparasitism occurs in the autumn the two parasitoid species engage in physical combat and C. melitaearum is favoured. Finally, a previous study showed that in the third C. melitaearum generation the univoltine H. horticola grows quickly during its final instar, excluding young C. melitaearum simply through limited time and resources. We found that contrary to expectations of the evolution of gregariousness, C. melitaearum , which lives in sibling groups, has biting mandibles in the first instar while the solitary H. horticola has suctorial mouthparts. Previous studies suggest that the two parasitoids co-exist because H. Horticola is dispersive and C. melitaearum is a strong local competitor. However, putting together the results of this experiment and out recent understanding of the adult wasp foraging behaviours and large scale population dynamics, we conclude that H. horticola is both a superior local competitor and more dispersive than C. melitaearum . Cotesia melitaearum has no impact on the population dynamics of H. horticola , persisting as a fugitive using a small fraction the larvae left unparasitized by H. horticola .  相似文献   

11.
The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4‐day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae‐larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

12.
The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4-day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae-larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

13.
Multimodal communication in solitary stinkbugs enables them to meet, mate and copulate. Many plant‐dwelling species exchange information during the calling phase of mating behavior using substrate‐borne vibratory signals. A female‐biased gender ratio induces rivalry and competition for a sexual partner. Female competition for males, first described among Heteroptera in three stinkbug species, revealed species specific differences and opened the question of plasticity in individually emitted temporal and frequency signal characteristics during calling and rival alternation. To address this question and gain an insight into the mechanisms underlying stinkbug female rivalry, we compared the characteristics of alternated signals in the southern green stinkbug Nezara viridula (Linnaeus, 1758) (Hemiptera: Pentatomidae). Compared to male rivalry, female rivalry is more complex, lasts longer and runs through successive phases by a combination of different song types. The male pheromone triggers alternation between females, producing song pulses that occasionally overlap each other. One female initiates the rivalry by changing individual pulses into pulse trains of three different types. The competing female alternates with pulses of changed temporal characteristics at lower levels of rivalry and by varying the frequency characteristics of pulse trains at higher levels. During female rivalry, the male either stops responding or occasionally emits calling and courtship signals in response to the female that has produced signals of steady temporal characteristics. Female rivalry shows complex and species specific patterns of information exchange at different levels with a broad‐range variation of temporal and frequency characteristics of, until now, unidentified vibratory emissions.  相似文献   

14.
Several aphid species exhibit female-biased sex allocation. Local mate competition (LMC) has been postulated to be the evolutionary factor of the female-biased sex allocation. We estimated individual sex allocation in the eriosomatine aphid Prociphilus oriens and explained the observed pattern of sex allocation based on a hypothesis other than LMC. On the basis of the relationship between maternal body size and brood size, we estimated the cost of producing a female to be 1.85 times the cost of producing a male. The population-wide allocation to males was 22–24 %. Winged mothers exhibited a large variation in the number of male and female embryos they had, including 23–30 % of winged mothers producing only female embryos. There was polymorphism in the sex-ratio expression. Thus, the constant male hypothesis assuming LMC was not supported. Winged mothers that produced an all-female brood contained larger female embryos than did mothers that produced a bisexual brood. Previous studies have indicated that a large sexual female produces a single large egg, which hatches into a first-instar larva containing a larger amount of gonads. Thus, in eriosomatine aphids, maternal investment in daughters directly affects the potential fecundity of granddaughters, whereas investment in sons does not. We propose a hypothesis that higher fitness returns from maternal investment in daughters than in sons may have primarily led to the evolution of highly female-biased sex allocation in P. oriens.  相似文献   

15.
《Biological Control》2005,32(2):311-318
Polyandry implies costs (i.e., time, energy, predation risk, etc.) especially in short-lived parasitoid species but females of several hymenopteran parasitoid species, mostly gregarious, do mate with multiple males. Several hypotheses have been proposed to explain the benefits of polyandry but controversy remains, especially in facultative gregarious species that bridge the gap between solitary and gregarious development. In this study, we investigated the possibility that polyandry may bring material benefits to Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) females, a short-lived and facultative gregarious egg parasitoid. Females mated several times with different males both at emergence and throughout their life. No significant difference was found in the offspring sex ratio and the fecundity of multiple mated and single mated females and pre-mating duration increased with the female’s age. The longevity of females did vary significantly with the number of matings but only in the presence of hosts. Female T. evanescens received enough sperm from one mating to allocate an optimal offspring sex ratio and we found no evidence of either nutritional resources or convenience polyandry in this species. Polyandry in facultative gregarious parasitoids might be an adaptive strategy to minimize the risk of mating with males that have already emptied their sperm bank or to accumulate sperm from several partially sperm-depleted males. Polyandry may also increase the probability of non-sib mating in patches exploited by several females.  相似文献   

16.
In the penultimate and last instar larvae of Schistocerca gregaria, 20-hydroxyecdysone (20E) makes up 74–84% of detected ecdysteroids in the females, and 63–74% in the males. Remaining ecdysteroids include ecdysone, a compound with HPLC and TLC retention times of makisterone A, and highly polar metabolites. Except for the last instar females, the contents of ecdysone and the unknown compound are higher in the solitary phase, while that of polar metabolites is higher in the gregarious phase. The phases also differ in that the molt-inducing ecdysteroid peaks last longer in the gregarious than in the solitary larvae. Peak concentrations reach 3.0–4.0 μg 20E equiv./ml in penultimate female instar, 2.5–3.0 μg/ml in penultimate male instar, and 1.5–2.0 μg/ml in the last larval instar of both sexes. © 1996 Wiley-Liss, Inc.  相似文献   

17.
In aphidiine parasitoids, resources for growth and adult body size increase with host instar used by ovipositing females, but the fitness consequences of body size on fitness are poorly documented. We compared the fitness of male and female A. nigripesadults that varied in size as a consequence of developing in different instars of their host Macrosiphum euphorbiae. When reproductive fitness was measured without considering time, female wasps from small and large hosts performed similarly, contributing 125–175 foundresses plus 100–180 sons to the next generation. However, when expressed as the innate capacity for increase (r m), female fitness correlated with host-induced variation of wasp size, indicating that micropopulations initiated by large wasps would increase faster. In a wind-tunnel, a sex pheromone plume from large female wasps induced more males to fly upwind when released at a distance of 50 cm downwind than small females, indicating that large females were sexually more attractive. With respect to male body size effects on fitness, large individuals performed similar to small ones, whether fitness was measured by lifetime mating frequency, fertile inseminations, or proportion of daughters among progeny born from their mates. When young naive males of unequal size were directly competing for mating with a virgin female, small and large males had equal mating success, and large individuals were no more successful than small ones at displacing a competitor already positioned on a receptive female. In a wind-tunnel test where males were scored on their ability to reach a female pheromone source, small and large males were equally affected by wind speed but reached the source located 50 cm downwind in equal proportions, suggesting similar capacity for finding mates by flying upwind. Our results indicate that despite host resources not being fixed at the time of attack for the koinobiont A. nigripes, fitness consequences of resource limitation by the mother may be perceived to be greater for daughters than sons, which would explain male-biased sex ratio in early-instar hosts.  相似文献   

18.
1. In studies on optimal foraging strategies, long-range decisions in the pursuit of resource are rarely considered. This is also the case for sympatric parasitoids, which may be confronted with the decision to accept or reject host larvae that are already parasitized by a competing species. They can be expected to reject already parasitized hosts if it is likely that they will lose the resulting intrinsic competition. However, examples of such interspecific host discrimination are rare. 2. We propose that parasitoids that are not egg-limited should reject inferior hosts only if it saves them time, and that this will be achieved mainly when the parasitoids are able to detect competitors from a distance. We tested this hypothesis using the sympatric parasitoids Cotesia marginiventris (Cresson) and Campoletis sonorensis (Cameron). 3. C. sonorensis was found to be the superior intrinsic competitor but, upon contact with a host larva, both wasps readily accepted hosts that had already been parasitized by the other species. However, in an olfactometer experiment, C. marginiventris females were found to strongly avoid the odour of their superior competitor. 4. These results are in accordance with a time optimization scenario, whereby the inferior competitor accepts competition if it costs only an egg, but avoids competition if it may save time that can be allocated to the search for more profitable hosts. 5. Models on host discrimination strategies in parasitoids had not yet considered discrimination from a distance. Long-range foraging decisions can also be expected for other organisms that have to choose between resources of varying suitability and profitability.  相似文献   

19.
Abstract The larvae of most endoparasitoid wasps consume virtually all host tissues before pupation. However, in some clades, the parasitoid larvae primarily consume haemolymph and fat body and emerge through the side of the host, which remains alive and active for up to several days. The evolutionary significance of this host‐usage strategy has attracted attention in recent years. Recent empirical studies suggest that the surviving larva guards the parasitoid broods against natural enemies such as predators and hyperparasitoids. Known as the ‘usurpation hypothesis’, the surviving larvae bite, regurgitate fluids from the gut, and thrash the head capsule when disturbed. In the present study, the ‘usurpation hypothesis’ is tested in the association involving Manduca sexta, its parasitoid Cotesia congregata, and a secondary hyperparasitoid Lysibia nana. Percentage parasitoid survival is higher and hyperparasitism lower when cocoons of C. congregata are attached to the dorsum of M. sexta caterpillars. Fat body contents in several associations involving solitary and gregarious parasitoids feeding on haemolymph and fat body are also compared. The amount of fat body retained in parasitized caterpillars varies considerably from one association to another. In M. sexta and Pieris brassicae, considerable amounts of fat body remain after parasitoid emergence whereas, in Cotesia kariyai and Cotesia rufricus, virtually all of the fat body is consumed by the parsasitoid larvae. The length of post‐egression survival of parasitized caterpillars differs considerably in several tested associations. In Pseudeletia separata, most larvae die within a few hours of parasitoid emergence whereas, in M. sexta, parasitized larvae live up to 2 weeks after parasitoid emergence. Larvae in other associations parasitized by gregarious and solitary endoparasitoids live for intermediate periods. The results are discussed in relation to the adaptive significance of different feeding strategies of immature parasitoids and of the costs and benefits of retaining the parasitized caterpillar in close proximity with the parasitoid cocoons.  相似文献   

20.
1. In nature, competitive interactions occur when different species exploit similar niches. Parasitic wasps (parasitoids) often have narrow host ranges and need to cope with competitors that use the same host species for development of their offspring. When larvae of different parasitoid species develop in the same host, this leads to intrinsic and often contest competition. Thus far, most studies on intrinsic competition have focused on primary parasitoids. However, competition among primary hyperparasitoids, parasitic wasps that use primary parasitoids as a host, has been little studied. 2. This study investigated intrinsic competition between two primary hyperparasitoids, the gregarious Baryscapus galactopus and the solitary Mesochorus gemellus, which lay their eggs in primary parasitoid larvae of Cotesia rubecula, while those in turn are developing inside their herbivore host, Pieris rapae. The aims were to identify: (i) which hyperparasitoid is the superior competitor; and (ii) whether oviposition sequence affects the outcome of intrinsic competition. 3. The results show that B. galactopus won 70% of contests when the two hyperparasitoids parasitised the host at the same time, and 90% when B. galactopus oviposited first. When M. gemellus had a 48 h head start, the two hyperparasitoids had an equal chance to win the competition. This suggests that B. galactopus is an intrinsically superior competitor to M. gemellus. Moreover, the outcome of competition is affected by time lags in oviposition events. 4. In contrast to what has been reported for primary parasitoids, we found that a gregarious hyperparasitoid species had a competitive advantage over a solitary species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号