首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli can cause serious infections in the neonates and pregnant women. Although E. coli is widely studied, E. coli lactose-negative (lac?) strains have been rarely described before. So, the aim of this study was to compare lac? and lactose-positive (lac+) E. coli strains in respect of antimicrobial susceptibility and the frequency of virulence genes (VGs). The study included 58 lac+ and 58 lac? E. coli strains isolated from pregnant women and neonates. Culture and the results of biochemical reactions were conducted for lac? and lac+ E. coli identification and differentiation. Disc diffusion test was performed to study the antimicrobial susceptibility of the isolates, and PCR was used to detect VGs. Resistance to at least one of the tested antibiotics was found among 14 (25.9%) E. coli lac+ and in 26 (44.9%) E. coli lac? strains. Both lac+ and lac? E. coli strains were mostly resistant to ampicillin (22.4 and 39.7%) and ticarcillin (20.7 and 39.7%). None of the tested strains produced extended-spectrum β-lactamases (ESBLs). Genes fimH, fimA, iutA, sfa/foc, neuC, ibeA, and hlyF were detected, respectively, in 96.6, 82.8, 32.8, 24.1, 22.4, 12.1, and 6.9% of lac+ E. coli strains and in 94.8, 86.2, 48.3, 19.0, 8.6, 8.6, and 1.7% of lac? strains. The antimicrobial susceptibility and the pathogenic potential of both tested groups of E. coli strains are similar. Therefore, omitting E. coli lac? strains as a potential etiological agent of infections may pose a threat to the health and life of both mothers and neonates.  相似文献   

2.
The present study was aimed at investigating the relationship between the new Clermont’s phylogenetic groups, virulence factors, and pathogenicity island markers (PAIs) among uropathogenic Escherichia coli (UPEC) in Iran. This cross-sectional study was carried out on 140 UPEC isolates collected from patients with urinary tract infections in Bushehr, Iran. All isolates were subjected to phylogenetic typing using a new quadruplex-PCR method. The presence of PAI markers and virulence factors in UPEC strains was evaluated by multiplex PCR. The most predominant virulence gene was fimH (85%), followed by iucC (61.4%), papC (38.6%), hlyA (22.1%), cnf-1 (18.6%), afa (10.7%), papG and neuC (each 9.3%), ibeA (3.6%), and sfa/foc (0.7%). The most common phylogenetic group was related to B2 (39.3%), and the least common to A (0.7%). The most prevalent PAI marker was PAI IV536 (77.14%), while markers for PAI III536 (13.57%), PAI IIJ96 (12.86%), and PAI II536 (12.14%) were the least frequent among the UPEC strains. Meanwhile, the PAI IJ96 marker was not detected. There was a significant association between the phylogenetic group B2 and all the studied virulence genes and PAI markers. To our knowledge, this is the first study to compare the relationship between new phylogenetic groups, virulence genes and PAI markers in UPEC strains in Iran. The phylogenetic group B2 was predominantly represented among the studied virulence genes and PAI markers, indicating the preference of particular strains to carry virulence genes.  相似文献   

3.
Trueperella pyogenes is one of the most important microorganisms causing metritis in post-partum cattle. Co-infection with other bacterial species such as Escherichia coli or Fusobacterium necrofurom increases the severity of the disease and the persistence of bacteria in utero. The aim of this study was to investigate the frequency of T. pyogenes strains, and their virulence and antimicrobial resistant profiles in metritis cases. The study was carried out on 200 samples obtained from metritis discharges of postpartum cattle on 18 farms around Tehran, Iran. Sixty-five T. pyogenes isolates (32.5%) were identified, of which 16 isolates were detected as pure cultures and the other 49 isolates from cultures most commonly mixed with E. coli or F. necrofurom. In terms of diversity in biochemical characteristic of T. pyogenes strains, 8 different biotypes were identified among the isolates. Single or multi antimicrobial resistance was observed in 48 isolates (73.9%), which was mostly against trimethoprim sulfamethoxazole, azithromycin, erythromycin and streptomycin. The tetracycline resistance gene tetW and macrolide resistance genes ermB and ermX were detected in 30, 18 and 25 isolates, respectively. In the screening of genes encoding virulence factors, fimA and plo genes were identified in all tested isolates. Genes encoding nanP, nanH, fimC, fimG, fimE and cbpA were detected in 50, 54, 45, 40, 50 and 37 of isolates, respectively. Thirteen different genotypes were observed in these T. pyogenes isolates. A significant association between clonal types and virulence factor genes, biochemical profile, CAMP test result, severity of the disease and sampling time was detected.  相似文献   

4.
The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.  相似文献   

5.
6.

Background

Extended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production in Klebsiella pneumoniae and Escherichia coli are the commonest modes of drug resistance among these commonly isolated bacteria from clinical specimens. So the main purpose of our study was to determine the burden of ESBL and MBL production in E. coli and K. pneumoniae isolated from clinical samples. Further, the antimicrobial susceptibility patterns of E. coli and K. pneumoniae were also determined.

Methods

A cross-sectional study was conducted at Om Hospital and Research Centre, Kathmandu, Nepal by using the E. coli and K. pneumoniae isolated from different clinical samples (urine, pus, body fluids, sputum, blood) from May 2015 to December 2015. Antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique. Extended spectrum beta-lactamase production was detected by combined disc method using ceftazidime and ceftazidime/clavulanic acid discs and cefotaxime and cefotaxime/clavulanic acid discs. Similarly, metallo beta-lactamase production was detected by combined disc assay using imipenem and imipenem/ethylenediaminetetracetate discs. Bacteria showing resistance to at least three different classes of antibiotics were considered multidrug resistant (MDR).

Results

Of total 1568 different clinical samples processed, 268 (17.1%) samples were culture positive. Among which, E. coli and K. pneumoniae were isolated from 138 (51.5%) and 39 (14.6%) samples respectively. Of the total isolates 61 (34.5%) were ESBL producers and 7 (4%) isolates were found to be MBL producers. High rates of ESBL production (35.9%) was noted among the clinical isolates from outpatients, however no MBL producing strains were isolated from outpatients. Among 138 E. coli and 39 K. pneumoniae, 73 (52.9%) E. coli and 23 (59%) K. pneumoniae were multidrug resistant. The lowest rates of resistance was seen toward imipenem followed by piperacillin/tazobactam, amikacin and cefoperazone/sulbactam.

Conclusions

High rate of ESBL production was found in the E. coli and K. pneumoniae isolated from outpatients suggesting the dissemination of ESBL producing isolates in community. This is very serious issue and can’t be neglected. Regular monitoring of rates of ESBL and MBL production along with multidrug resistance among clinical isolates is very necessary.
  相似文献   

7.
Bacterial strains were isolated from cassava-derived food products and, for the first time, from cassava by-products, with a focus on gari, a flour-like product, and the effluents from the production processes for gari and fufu (a dough also made from cassava flour). A total of 47 strains were isolated, all of which were tested to determine their resistance to acidic pH and to bile salt environments. Four of the 47 isolates tested positive in both environments, and these four isolates also showed antibacterial behaviour towards both Gram-positive and Gram-negative microbial pathogens (i.e. Methicillin-resistance Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Salmonella enteritidis, Escherichia coli, Escherichia coli (O157), Yersinia enterocolitica). In most cases, the antibacterial activity was related to bacteriocin production. Molecular identification analysis (16S rDNA and randomly amplified polymorphic DNA-PCR) revealed that the four isolates were different strains of the same species, Lactobacillus fermentum. These results demonstrate that bacteria isolated from cassava-derived food items and cassava by-products have interesting properties and could potentially be used as probiotics.  相似文献   

8.
Steady growth in the degree of antimicrobial resistance in Neisseria gonorrhoeae calls for the control of the spreading of resistance mutations. Here we present the data describing drug resistance mutations, the results of antimicrobial susceptibility tests, and molecular genotypes of 128 recent N. gonorrhoeae isolates collected across 9 regions of the Russian Federation. The mutations in chromosome genes penA, ponA, rpsJ, gyrA, parC, which determine the susceptibility of N. gonorrhoeae to penicillins, tetracyclines, and fluoroquinolones were detected by multiplex amplification followed by hybridization on a hydrogel microarray. The most frequent mutation was an insertion of an aspartate at position 345 of penA gene (76.6%), whereas mutations Leu421Pro in ponA gene, Val57Met in rpsJ gene, Ser91Phe in gyrA gene, Asp95Gly in gyrA gene, and Ser87Arg in parC gene were detected in 32.8–36.7% of strains. One third of studied N. gonorrhoeae isolates harbored multiple drug resistance mutations in bacterial chromosome, resulting in the bimodal distribution of mutation profiles and related patterns of antimicrobial susceptibility. The spread of multiple resistance could be explained by the vertical transfer of the mutations resulting in the clonality of the N. gonorrhoeae population.  相似文献   

9.

Background

Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment.

Methods

The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray.

Results

Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim–sulfamethoxazole, ampicillin, and ampicillin–sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6′)lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored blaCTX-M genes, with blaCTX-M-15 being the most prevalent.

Conclusions

Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico.
  相似文献   

10.
The present study was undertaken to detect the occurrence of beta-lactamase-/AmpC-producing Klebsiella and Escherichia coli in healthy pigs, feed, drinking water, and pen floor or surface soil. The study also intended to detect the clonal relationship between the environmental and porcine isolates to confirm the route of transmission. Rectal swabs and environmental samples were collected from apparently healthy pigs kept in organized or backyard farms in India. The pigs had no history of antibiotic intake. Production of phenotypical beta-lactamase, associated genes, and class I integron gene was detected in E. coli and Klebsiella isolates. The phylogenetic relationship among the isolates was established on the basis of Random amplification of polymorphic DNA banding pattern. Beta-lactamase-producing Klebsiella were isolated from healthy pigs (20.0%), pen floor swabs/surface soil swabs (14.0%), and drinking water (100%). Escherichia coli isolated from healthy pigs (14.4%), pen floor/surface soil (8.0%), and drinking water (33.3%) were detected as beta-lactamase producers. Majority of beta-lactamase-producing isolates possessed blaCTX-M-9. Further, 35 (81%) Klebsiella and all the E. coli isolates were detected as AmpC beta-lactamase ACBL producers and possessed blaAmpC. Sixteen beta-lactamase-producing Klebsiella (37.20%) and 13 E. coli (86.67%) possessed class I integron. Few resistant isolates from environmental sources (surface soil swab and drinking water) and the studied pigs were detected within the same cluster of the dendrogram representing their similarities. The study indicated about the possible role of contaminated environment as a source of beta-lactamase/AmpC-producing Klebsiella and E. coli in pigs.  相似文献   

11.
The present study evaluates the probiotic properties of three Lactobacillus plantarum strains MJM60319, MJM60298, and MJM60399 possessing antimicrobial activity against animal enteric pathogens. The three strains did not show bioamine production, mucinolytic and hemolytic activity and were susceptible to common antibiotics. The L. plantarum strains survived well in the simulated orogastrointestinal transit condition and showed adherence to Caco-2 cells in vitro. The L. plantarum strains showed strong antimicrobial activity against enterotoxigenic Escherichia coli, Shiga toxin-producing E. coli, Salmonella enterica subsp. enterica serovar Typhimurium, Choleraesuis and Gallinarum compared to the commercial probiotic strain Lactobacillus rhamnosus GG. The mechanism of antimicrobial activity of the L. plantarum strains appeared to be by the production of lactic acid. Furthermore, the L. plantarum strains tolerated freeze-drying and maintained higher viability in the presence of cryoprotectants than without cryoprotectants. Finally, the three L. plantarum strains tolerated NaCl up to 8% and maintained >60% growth. These characteristics of the three L. plantarum strains indicate that they could be applied as animal probiotic after appropriate in vivo studies.  相似文献   

12.
The genetic basis for phenicol resistance was examined in 38 phenicol-resistant clinical Escherichia coli isolates from poultry. Out of 62 isolates, 38 showed resistance for chloramphenicol and nine for florfenicol, respectively. Each strain also demonstrated resistance to a variety of other antibiotics. Molecular detection revealed that the incidence rates of the cat1, cat2, flo, flo-R, cmlA, and cmlB were 32, 29, 18, 13, 0, and 0%, respectively. Nineteen strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of five isolates revealed the amino acid changes in four isolates. DNA sequencing showed the non-synonymous mutations which change the amino acid, silent mutation, and nucleotide deletion in four isolates. MY09C10 showed neither deletion nor mutation in nucleotide. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in these strains. Complementation with a plasmid-borne wild-type acrR gene reduced the expression level of AcrA protein in the mutants and partially restored antibiotic susceptibility one- to fourfold. This study shows that mutations in acrR are an additional genetic basis for phenicol resistance.  相似文献   

13.
The study focused on the incidence of enterotoxigenic Escherichia coli (ETEC) and verotoxigenic E. coli (VTEC) in raw milk and traditional dairy cheeses marketed in Romania, characterizing the virulence and antibiotic resistance genes of these isolates. One hundred and twenty samples of raw milk and 80 samples of unpasteurized telemy cheese were collected and cultured according to the international standard protocol. All the characteristic E. coli cultures were analyzed for the presence of STa, STb, LT, stx1, and stx2 toxicity genes. The ETEC/VTEC strains were tested for the presence of antibiotic resistance genes, such as aadA1, tetA, tetB, tetC, tetG, dfrA1, qnrA, aaC, sul1, bla SHV , bla CMY , bla TEM , and ere(A), using PCR. The results showed that 27 samples (18.62%) were positive for one of the virulence genes investigated. 48.1% (n = 13) tested positive at the genes encoding for tetracycline resistance, tetA being the most prevalent one (61.5%; n = 8). A high percent (33.3%; n = 9) revealed the beta-lactamase (bla TEM ) resistance gene, and none of the samples tested positive for bla CMY and bla SHV genes. The genes responsible for resistance to sulfonamides (sul1) and trimethoprim (dfrA1) were detected in rates of 14.8% (n = 4) and 7.4% (n = 2), respectively. E. coli is highly prevalent in raw milk and unpasteurized cheeses marketed in Romania. These strains might represent an important reservoir of resistance genes which can easily spread into other European countries, given the unique market.  相似文献   

14.

Objective

To purify and characterize a novel bacteriocin with broad inhibitory spectrum produced by an isolate of Enterococcus faecalis from Chinese fermented cucumber.

Results

E. faecalis L11 produced a bacteriocin with antimicrobial activity against both Escherichia coli and Staphylococcus aureus. The amino acid sequence of the purified bacteriocin, enterocin L11, was assayed by Edman degradation method. It differs from other class II bacteriocins and exhibited a broad antimicrobial activity against not only Gram-positive bacteria, including Bacillus subtilis, S. aureus, Listeria monocytogenes, Sarcina flava, Lactobacillus acidophilus, L. plantarum, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus, but also some Gram-negative bacteria including Salmonella typhimurium, E. coli and Shigella flexneri. Enterocin L11 retained 91 % of its activity after holding at 121 °C for 30 min. It was also resistant to acids and alkalis.

Conclusions

Enterocin L11 is a novel broad-spectrum Class II bacteriocin produced by E. faecalis L11, and may have potential as a food biopreservative.
  相似文献   

15.
Due to limited data available on the presence of antibiotic-resistant (ABR) bacteria in faeces of wild herbivores in South Africa, this study analysed resistance patterns for Escherichia coli isolates from wildebeest, zebra and giraffe in addition to pet and farm pig faeces. Total and faecal coliforms and E. coli were quantified in faecal matter using a most probable number (MPN) guideline procedure. Antibiotic resistance profiles against 12 selected antibiotics representing seven classes were determined for 30 randomly selected E. coli isolates from each animal using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disk diffusion procedure. While log10 MPN values per gram of animal faeces for total/faecal coliforms ranged from 4.51/4.11 to 5.70/5.50, the E. coli MPN values were in a range of 3.43–5.14. The proportion of ABR E. coli isolates ranged from 43% (giraffe) to 93% (zebra). About 47% of E. coli isolates from zebra faeces were categorized as multidrug-resistant (MDR), while for wildebeest and giraffe, no MDR isolates were detected. In comparison, 10% of E. coli isolates from pet pig and about 7% from farm pig faeces were categorized as MDR. Although most MDR isolates were resistant to at least one β-lactam antibiotic, only one MDR isolate from farm pig faeces was resistant to both norfloxacin and ciprofloxacin, the two fluoroquinolones tested. However, no resistance was detected to the tested carbapenems and tigecycline. The results of this study indicate that indigenous South African herbivores may serve as potential reservoirs and vectors for the dissemination of ABR E. coli strains.  相似文献   

16.
Microorganisms intended for use as probiotics in aquaculture should exert antimicrobial activity and be regarded as safe not only for their aquatic hosts but also for their surrounding environments and humans. The objective of this work was to investigate antimicrobial activity against various pathogens, bile salt tolerance, and acid tolerance of 65 presumptive Lactobacillus spp. isolated from shellfish samples. Four strains (HL1, HL12, HL20, and JL28) were selected after qualitatively identifying high levels of antimicrobial activity against bacteria including Staphylococcus aureus, Salmonella typhimurium, Salmonella enteritidis, Escherichia coli O157:H7, Vibrio ichthyoenteri, Edwardsiella tarda, Streptococcus iniae, and V. parahaemolyticus. The sequence analysis of their 16S rRNA genes revealed that the four strains belong to the Lactobacillus plantarum species. In addition, their survivability was tested in bile salt and acidic conditions to show their potential use as probiotics in the gastrointestinal tract.  相似文献   

17.
This study characterized probiotics Kocuria SM1 and Rhodococcus SM2, which were recovered from the intestinal microbiota of rainbow trout (Oncorhynchus mykiss, Walbaum). The cultures were Gram-positive, non-motile, catalase-positive and oxidase-negative cocci or rods. Cell multiplication of SM1 and SM2 was observed at 4–37 °C (45 °C for SM1), in 0–20% (w/v) NaCl and at pH 2–11. The viability was not affected when exposed to pepsin at pH 2.0 and 3.0, and pancreatin at pH 8.0. Neither isolates were chrome azurol S-positive for siderophore production. Of the 19 common enzymes analysed using the API-ZYM system, only 8 were evident in the culture of SM1 compared to 11 enzymes for SM2. The secondary metabolites of both probiotics were inhibitory to Acinetobacter baumannii, Vibrio anguillarum and V. ordalii; SM2 inhibited Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. SM2 was resistant to penicillin and sulphatriad, out of six antimicrobial agents; SM1 was resistant to sulphatriad. These results suggest that Kocuria SM1 and Rhodococcus SM2 are able to grow over a wide range of temperature, salinity and pH, including in conditions that mimic the gastrointestinal environment of fish and produce extracellular enzymes that may have a role in the host digestive processes. Importantly, Rhodococcus SM2 displays a high degree of bacteriocinogenic potential against multi-drug-resistant human pathogens that have never been documented among the gut microbiota of fish.  相似文献   

18.

Background

The widespread Escherichia coli clone ST131 implicated in multidrug-resistant infections has been recently reported, the majority belonging to O25:H4 serotype and classified into five main virotypes in accordance with the virulence genes carried.

Methods

Pathogenicity Islands I and II (PAI-I and PAI-II) were determined using conventional PCR protocols from a set of four E. coli CTXR ST131 O25:H4/H30-Rx strains collected from healthy donors’ stool. The virulence genes patterns were also analyzed and compared them with the virotypes reported previously; then adherence, invasion, macrophage survival and biofilm formation assays were evaluated and AIEC pathotype genetic determinants were investigated.

Findings

Non-reported virulence patterns were found in our isolates, two of them carried satA, papA, papGII genes and the two-remaining isolates carried cnfI, iroN, satA, papA, papGII genes, and none of them belonged to classical ST131 virotypes, suggesting an endemic distribution of virulence genes and two new virotypes. The presence of PAI-I and PAI-II of Uropathogenic E. coli was determined in three of the four strains, furthermore adherence and invasion assays demonstrated higher degrees of attachment/invasion compared with the control strains. We also amplified intI1, insA and insB genes in all four samples.

Interpretation

The results indicate that these strains own non-reported virotypes suggesting endemic distribution of virulence genes, our four strains also belong to an AIEC pathotype, being this the first report of AIEC in México and the association of AIEC with healthy donors.
  相似文献   

19.

Background

In recent years, New Delhi metallo-beta-lactamases 1 (bla NDM-1) has been reported with increasing frequency and become prevalent. The present study was undertaken to investigate the epidemiological dissemination of the bla NDM-1 gene in Enterobacter cloacae isolates at a teaching hospital in Yunnan, China.

Methods

Antimicrobial susceptibility testing was performed using VITEK 2 system and E test gradient strips. The presence of integrons and insertion sequence common region 1 were examined by PCR and sequencing. Clonal relatedness was assessed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Conjugation experiments and Southern blot hybridization were performed to determine the transferability of plasmids.

Results

Ten E. cloacae isolates and their Escherichia coli transconjugants were exhibited similar resistant patterns to carbapenems, cephalosporins and penicillins. 8 (80%) of E. cloacae isolates carried class 1 integron and 1 (12.5%) carried class 2 integron. Integron variable regions harbored the genes which encoded resistance to aminoglycosides (aadA1, aadA2, aadA5, aadB, aac(6′)-Ib-cr), sulfamethoxazole/trimethoprim (dfrA17, dfrA12, dfrA15) and Streptozotocin (sat2). Six E. cloacae isolates belonged to ST74 and exhibited highly similar PFGE patterns. Each isolate shared an identical plasmid with ~33.3 kb size that carried the bla NDM-1 gene, except T3 strain, of which the bla NDM-1 gene was located on a ~50 kb plasmid.

Conclusions

Our findings suggested that plasmid was able to contribute to the dissemination of bla NDM-1. Hence, more attention should be devoted to monitor the dissemination of the bla NDM-1 gene due to its horizontal transfer via plasmid. In addition, nosocomial surveillance system should actively monitor the potential endemic clone of ST74 to prevent their further spread.
  相似文献   

20.
The aim of this study was to evaluate probiotic properties of antimicrobial Lactobacillus plantarum VJC38 in vitro. L. plantarum VJC38 was isolated from the crop of broiler chicken and characterized using dnaK gene sequence. The inhibitory activities of L. plantarum VJC38 against bacterial and fungal pathogens were evaluated. Antifungal compounds secreted by the strain VJC38 were identified using Gas Chromatography and Mass Spectrometry (GC-MS). The strain was evaluated for its tolerance to low pH, resistance to bile salts, auto-aggregation, co-aggregation with pathogenic Escherichia coli, cell surface hydrophobicity, cholesterol lowering activity, β-galactosidase production, adhesion ability to Caco-2 cells, mucin degradation, hemolytic activity and biogenic amine production. Phylogenetic analysis of dnaK gene of bacterial strain VJC38 showed 99% sequence similarity to Lactobacillus plantarum var. plantarum. It showed effective inhibition against food spoiling and pathogenic organisms like Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Aspergillus niger, Penicillium expansum and Eurotium species. The antifungal compound phenol- 2,4-bis(1,1-dimethylethyl) (PD) was identified in the culture filtrate of L. plantarum VJC38 and reported to have inhibition against Aspergillus species. L. plantarum VJC38 exhibited tolerance to low pH, resistance to bile salts, bile salt hydrolase activity, auto-aggregation (87.5%), co-aggregation with Escherichia coli (55.7%), cholesterol lowering activity (64%), β-galactosidase production (1206 MU), adherence to Caco-2 cells (11%), negative for mucin degradation, hemolytic activity and biogenic amine production. L. plantarum VJC38 could be a good candidate for further investigation in vivo to elucidate its health benefits and to evaluate its technological properties as a bio-protective strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号