共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lena Jansson Jonas Ångström Michael Lebens Susann Teneberg 《Glycoconjugate journal》2010,27(1):171-179
A novel carbohydrate binding site recognizing blood group A and B determinants in a hybrid of cholera toxin and Escherichia coli heat-labile enterotoxin B-subunits (termed LCTBK) has previously been described, and also the native heat-labile enterotoxin bind to some extent to blood group A/B terminated glycoconjugates. The blood group antigen binding site is located at the interface of the B-subunits. Interestingly, the same area of the B-subunits has been proposed to be involved in binding of the heat-labile enterotoxin to lipopolysaccharides on the bacterial cell surface. Binding of the toxin to lipopolysaccharides does not affect the GM1 binding capacity. The present study aimed at characterizing the relationship between the blood group A/B antigen binding site and the lipopolysaccharide binding site. However, no binding of the B-subunits to E. coli lipopolysaccharides in microtiter wells or on thin-layer chromatograms was obtained. Incubation with lipopolysaccharides did not affect the binding of the B-subunits of heat-labile enterotoxin of human isolates to blood group A-carrying glycosphingolipids, indicating that the blood group antigen site is not involved in LPS binding. However, the saccharide competition experiments showed that GM1 binding reduced the affinity for blood group A determinants and vice versa, suggesting that a concurrent occupancy of the two binding sites does not occur. The latter finding is related to a connection between the blood group antigen binding site and the GM1 binding site through residues interacting with both ligands. 相似文献
3.
In this study, the cellulase gene celD from Clostridium thermocellum was cloned into expression vectors pET-20b(+) and pHsh. While high expression can be achieved by means of both these expression systems, only the pHsh expression system gives soluble proteins. By weakening the mRNA secondary structure and replacing the rare codons for the N-terminal amino acids of the target protein, the expression level of CelD was increased from 4.1 ± 0.3 to 6.4 ± 0.4 U ml−1 in LB medium. Recombinant CelD was purified by heat treatment followed by Ni–NTA affinity. The purified CelD exhibited the highest activity at pH 5.4 and 60°C, and retained more than 50% activity after incubation at 70°C for 1 h. The cellulase activity of CelD was significantly enhanced by Ca2+ but inhibited by EDTA. The favorable properties of CelD offer the potential for genetic modification of strains for biomass degradation. Presently, one of the major bottlenecks for industrial cellulase users is the high cost of enzyme production. The high level expression of soluble enzymes from the pHsh expression system offers a novel approach for the production of cellulases to be used in various agro-industrial processes such as chemical, food and textile. 相似文献
4.
Jorge Hernandez Valeria Prado Daniel Torres Jonas Waldenström Paul D. Haemig Björn Olsen 《Polar Biology》2007,30(10):1227-1229
Rectal swabs were collected from Antarctic fur seal pups Arctocephalus gazella at Cape Shirreff, South Shetland Islands, and analyzed for the presence of anthropogenic pathogens. Two of the 33 pups tested positive for enteropathogenic Escherichia coli (EPEC). These samples are the first records of EPEC in Antarctic wildlife and suggest that more needs to be done to protect the Antarctic fauna from exotic anthropogenic pathogens. 相似文献
5.
The results presented in this article show that direct plasmid transfer from Escherichia coli carrying shuttle plasmid to Bacillus subtilis occurred when close contact between the two species was established by mixing E. coli and B. subtilis onto selective agar plates. The data demonstrate that the production of resistant colonies by plasmid transformation through cell contact was DNase I sensitive and dependent on transformable B. subtilis strains. Furthermore, another observation indicated that the E. coli strain is able to affect the transformation capability of B. subtilis. It is assumed that the donor strain is a momentous factor for taking up plasmid DNA. This conclusion is significant in the assessment of both the possibility of intercellular DNA transfer in natural habitats of micro-organisms and the risk of the application of genetically engineered micro-organisms. 相似文献
6.
Renu Nandakumar Christophe Espirito Santo Nandakumar Madayiputhiya Gregor Grass 《Biometals》2011,24(3):429-444
Metallic copper surfaces have strong antimicrobial properties and kill bacteria, such as Escherichia coli, within minutes in a process called contact killing. These bacteria are exposed to acute copper stress under dry conditions which is different from chronic copper stress in growing liquid cultures. Currently, the physiological changes of E. coli during the acute contact killing process are largely unknown. Here, a label-free, quantitative proteomic approach was employed to identify the differential proteome profiles of E. coli cells after sub-lethal and lethal exposure to dry metallic copper. Of the 509 proteins identified, 110 proteins were differentially expressed after sub-lethal exposure, whereas 136 proteins had significant differences in their abundance levels after lethal exposure to copper compared to unexposed cells. A total of 210 proteins were identified only in copper-responsive proteomes. Copper surface stress coincided with increased abundance of proteins involved in secondary metabolite biosynthesis, transport and catabolism, including efflux proteins and multidrug resistance proteins. Proteins involved in translation, ribosomal structure and biogenesis functions were down-regulated after contact to metallic copper. The set of changes invoked by copper surface-exposure was diverse without a clear connection to copper ion stress but was different from that caused by exposure to stainless steel. Oxidative posttranslational modifications of proteins were observed in cells exposed to copper but also from stainless steel surfaces. However, proteins from copper stressed cells exhibited a higher degree of oxidative proline and threonine modifications. 相似文献
7.
To examine the subcellular localization of the replication machinery in Escherichia coli, we have developed an immunofluorescence method that allows us to determine the subcellular location of newly synthesized DNA pulse-labeled with 5-bromo-2′-deoxyuridine (BrdU). Using this technique, we have analyzed growing cells. In wild-type cells that showed a single BrdU fluorescence signal, the focus was located in the middle of the cell; in cells with two signals, the foci were localized at positions equivalent to 1/4 and 3/4 of the cell length. The formation of BrdU foci was dependent upon ongoing chromosomal replication. A mutant lacking MukB, which is required for proper partitioning of sister chromosomes, failed to maintain the ordered localization of BrdU foci: (1) a single BrdU focus tended to be localized at a pole-proximal region of the nucleoid, and (2) a focus was often found to consist of two replicating chromosomes. Thus, the positioning of replication forks is affected by the disruption of the mukB gene. 相似文献
8.
9.
Background
The mRNA translation initiation region (TIR) comprises the initiator codon, Shine-Dalgarno (SD) sequence and translational enhancers. Probably the most abundant class of enhancers contains A/U-rich sequences. We have tested the influence of SD sequence length and the presence of enhancers on the efficiency of translation initiation. 相似文献10.
Production of Vanillin by Metabolically Engineered <Emphasis Type=Italic>Escherichia coli</Emphasis>
Yoon SH Li C Kim JE Lee SH Yoon JY Choi MS Seo WT Yang JK Kim JY Kim SW 《Biotechnology letters》2005,27(22):1829-1832
E. coli was metabolically engineered to produce vanillin by expression of the fcs and ech genes from Amycolatopsis sp. encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively. Vanillin production was optimized by leaky expression of the genes, under the IPTG-inducible trc promoter, in complex 2YT medium. Supplementation with glucose, fructose, galactose, arabinose or glycerol severely decreased vanillin production. The highest vanillin production of 1.1 g l−1 was obtained with cultivation for 48 h in 2YT medium with 0.2% (w/v) ferulate, without IPTG and no supplementation of carbon sources. 相似文献
11.
12.
Hang Yu Xin Meng Francis Worlanyo Kwami Aflakpui Lixin Luo 《Annals of microbiology》2016,66(2):727-736
13.
14.
The effect of hydrogen peroxide on the activity of soxRS and oxyR regulon enzymes in different strains of Escherichia coli has been studied. Treatment of bacteria with 20 μM H2O2 caused an increase in catalase and peroxidase activities (oxyR regulon) in all strains investigated. It is shown for the first time that oxidative stress induced by hydrogen peroxide causes in some E. coli strains a small increase in activity of superoxide dismutase and glucose-6-phosphate dehydrogenase (soxRS regulon). This effect is cancelled by chloramphenicol, an inhibitor of protein synthesis in prokaryotes. The increase in soxRS regulon enzyme activities was not found in the strain lacking the soxR gene. These results provide evidence for the involvement of the soxRS regulon in the adaptive response of E. coli to oxidative stress induced by hydrogen peroxide. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1506–1513. Original Russian Text Copyright ? 2005 by Semchyshyn, Bagnyukova, Lushchak. 相似文献
15.
L. I. Vorob’yova A. V. Fedotova E. Yu. Khodzhaev 《Applied Biochemistry and Microbiology》2010,46(6):567-573
Reactivating factor (RF) from Luteococcus japonicus subsp. casei had a protective action on UV-irradiated cells of Escherichia coli AB1157 with a native reparation system and on cells of isogenic reparation mutants of E. coli UvrA−, RecA−, and PolA−: the effect resulted in multifold increase of survivability. Defense action of L. casei exometabolite is not connected with stimulating reparation systems in E. coli, and, probably, it is mediated by involvement of the exometabolite in the mechanism of cell division. RF did not provoke the reactivation of E. coli cells inactivated by UV-light. 相似文献
16.
The purpose of this work was to characterize the cellular and proteomic responses of Escherichia coli JK-17 exposed to the rose flower extract (Rosa hybrida). The bacterial isolate was enriched and isolated from contaminated food. 16S rRNA sequence analyses revealed that the strain was 99% similar to the E. coli species cluster; therefore, this strain was designated E. coli JK-17. The rose flower extract showed a dose-dependent antibacterial effect on E. coli JK-17. Treatment of E. coli JK-17 with 50 and 100 mg/mL of the rose flower extract completely inhibited growth within 12 and 6 h of incubation. The stress shock proteins (SSPs) were induced with different concentrations of rose flower extract. The proteins were identified as 70-kDa DnaK and 60-kDa GroEL by SDS-PAGE and Western blot using anti-DnaK and anti-GroEL monoclonal antibodies. The levels of SSPs induced by the rose flower extract increased when the exposure time to the rose flower extract was increased. SDS-PAGE with silver staining revealed that the amount of lipopolysaccharide (LPS) in E. coli JK-17 increased or decreased with different concentrations and exposure times of the rose flower extract. To identify proteins induced by the rose flower extract, 2-dimensional electrophoresis (2-DE) was applied to soluble protein fractions of E. coli JK-17 cultures. In the pH range of 4 ∼ 7, more than 250 spots were detected on the silver stained gels. Notably, 15 protein spots were increased or decreased after treatment with the rose flower extract. Twelve up-regulated proteins were identified as chaperones (DnaK and GroEL) and porin proteins (PhoE, RfaI, RfaG, MdoH, and WzzE) by MALDITOF mass spectrometry, and three down-regulated proteins were identified, including proteins involved in energy and DNA metabolism (SdhA and GyrB), and amino acid biosynthesis (GltK). Using scanning electron microscopic analysis, some cells were shown to adopt irregular rod shapes and wrinkled surfaces after treatment with the rose flower extract. These results provide clues for better understanding the mechanism of rose flower extract-induced stress and cytotoxicity in E. coli JK-17. 相似文献
17.
P. D. Nguyen C.-L. Ho J. A. Harikrishna M. C. V.-L. Wong R. Abdul Rahim 《Trees - Structure and Function》2007,21(5):515-520
Salinity reduces plant growth and crop production globally. The discovery of genes in salinity tolerant plants will provide the basis for effective genetic engineering strategies, leading to greater stress tolerance in economically important crops. In this study, we have identified and isolated 107 salinity tolerant candidate genes from a mangrove plant, Acanthus ebracteatus Vahl by using bacterial functional assay. Sequence analysis of these putative salinity tolerant cDNA candidates revealed that 65% of them have not been reported to be stress related and may have great potential for the elucidation of unique salinity tolerant mechanisms in mangrove. Among the genes identified were also genes that had previously been linked to stress response including salinity tolerance, verifying the reliability of this method in isolating salinity tolerant genes by using E. coli as a host. 相似文献
18.
A nonenzymatic glycation of the recombinant leghemoglobin expressed in Escherichia coli cells was demonstrated for the first time. This process involved the heme pocket and gave low-spin leghemoglobin species. A correlation between the degree of E. coli protein glycation and synthesis of poly-β-hydroxybutyric acid was found, suggesting that the accumulation of reserve carbon sources and nonenzymatic glycation could be alternative processes. 相似文献
19.
Shaofang Liu Yingjie Chen Yandu Lu Huaxin Chen Fuchao Li Song Qin 《Photosynthesis research》2010,105(2):135-142
Allophycocyanin (APC), a cyanobacterial photosynthetic phycobiliprotein, functions in energy transfer as a light-harvesting protein. One of the prominent spectroscopic characteristics of APC is a strong red-shift in the absorption and emission maxima when monomers are assembled into a trimer. Previously, holo-APC α and β subunits (holo-ApcA and ApcB) were successfully synthesized in Escherichia coli. In this study, both holo-subunits from Synechocystis sp. PCC 6803 were co-expressed in E. coli, and found to self-assemble into trimers. The recombinant APC trimer was purified by metal affinity and size-exclusion chromatography, and had a native structure identical to native APC, as determined by characteristic spectroscopic measurements, fluorescence quantum yield, tryptic digestion analysis, and molecular weight measurements. Combined with results from a study in which only the monomer was formed, our results indicate that bilin synthesis and the subsequent attachment to apo-subunits are important for the successful assembly of APC trimers. This is the first study to report on the assembly of recombinant ApcA and ApcB into a trimer with native structure. Our study provides a promising method for producing better fluorescent tags, as well as a method to facilitate the genetic analysis of APC trimer assembly and biological function. 相似文献
20.
The question of whether discontinuous DNA replication operates only for the lagging strand or for both strands in E. coli remains unresolved. In this study, the participation of priA, B, C and rep genes in discontinuous DNA replication was examined by analyzing the size distribution of nascent DNA synthesized in wild-type, lig-7 and polA4113 genetic backgrounds. Inactivation of priA, but not priB, priC or rep, resulted in a significant increase of high molecular weight (HMW) DNA in the short pulse-labeled DNA in the wild-type lig + polA + strains. Inactivation of priA also produced a significant increase of HMW DNA in the nascent DNA synthesized in lig-7 and polA4113 strains. These results indicate that PriA is involved in the discontinuous synthesis of nascent DNA. 相似文献