首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Bradykinin is known to activate phospholipase D in PC12 cells. Because bradykinin may also activate protein kinase C in these cells, the possible role of this kinase in mediating the action of bradykinin was investigated. Phospholipase D activity in PC12 cells was assayed by measuring the formation of [3H]phosphatidylethanol in cells prelabeled with [3H]palmitic acid and incubated in the presence of ethanol. The phorbol ester phorbol dibutyrate mimicked the effect of bradykinin on [3H]phosphatidylethanol formation. The protein kinase C inhibitor staurosporine (1 microM) significantly attenuated the effect of phorbol dibutyrate (35-70%) but did not block bradykinin-stimulated [3H]phosphatidylethanol formation. In addition, the effect of phorbol dibutyrate was additive with that of bradykinin. Prolonged treatment of PC12 cells with phorbol dibutyrate (24 h), which depletes cells of protein kinase C, greatly attenuated bradykinin-stimulated [3H]phosphatidylethanol accumulation in intact cells. This treatment caused a 55% decrease in both fluoride-stimulated [3H]phosphatidylethanol production in the intact cell and phospholipase D activity as assessed by an in vitro assay using an exogenous substrate. Therefore, the effect of prolonged phorbol dibutyrate pretreatment on bradykinin-stimulated [3H]phosphatidylethanol production could not be attributed exclusively to the depletion of protein kinase C. Thus, although the data with phorbol ester suggest that activation of protein kinase C leads to an increase in phospholipase D activity, this kinase probably does not play a role in mediating the effect of bradykinin. Finally, although pretreatment with phorbol dibutyrate completely blocked bradykinin-stimulated [3H]phosphatidylethanol production in the intact cell, it only partially (approximately 50%) inhibited bradykinin-stimulated [3H]diacylglycerol formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mechanism of phosphatidylcholine (PC) degradation stimulated by phorbol myristate acetate (PMA) was investigated in bovine pulmonary artery endothelial cells prelabeled with [methyl-3H]choline ([3H]choline) or [9,10-3H]myristic acid ([3H]myristic acid). Both labels were selectively incorporated into PC, and addition of PMA stimulated comparable losses of 3H from PC in cells prelabeled with [3H]choline or [3H]myristate. In cells prelabeled with [3H]choline, the loss of 3H from PC correlated with a rapid increase in intracellular free [3H]choline. The increase in intracellular [3H]choline stimulated by PMA was not preceded by an increase in any other 3H-labeled PC degradation product. PMA did not stimulate the formation of PC deacylation products in cells prelabeled with [3H]choline. In permeabilized cells prelabeled with [3H]choline, PMA stimulated the formation of [3H]choline but not [3H]phosphocholine. In intact cells prelabeled with [3H]myristate, the loss of 3H from PC induced by PMA correlated with the formation of [3H]phosphatidic acid ([3H]PA) and [3H]diacylglycerol. In the presence of ethanol, PMA stimulated the formation of [3H]phosphatidylethanol ([3H]PEt) at the expense of [3H]PA. The time-course of [3H]PEt formation was similar to the time-course of intracellular [3H]choline formation in cells stimulated with PMA. These data taken together support the notion that PC degradation in endothelial cells stimulated with PMA is mediated principally by phospholipase D. PC breakdown via phospholipase D was not observed in cells treated with phorbol esters incapable of interacting with protein kinase C. Activation of phospholipase D by phorbol esters was inhibited by long-term pretreatment of cells with PMA to down-regulate protein kinase C and by pretreatment of the cells with staurosporine. These data support the notion that activation of phospholipase D by phorbol esters is dependent upon protein kinase C.  相似文献   

4.
Both carbachol and bradykinin increased diacylglycerol formation in PC12 pheochromocytoma cells. The effect of carbachol was apparent only in cells that had been treated with nerve growth factor. Incubation of the cells in Ca2(+)-free medium attenuated carbachol-stimulated diacylglycerol formation but did not reduce the response to bradykinin. Pretreatment of the cells with pertussis toxin did not affect either carbachol- or bradykinin-stimulated diacylglycerol formation; therefore, the inhibitory guanine nucleotide Gi probably does not mediate this response. The time course of carbachol-stimulated diacylglycerol accumulation did not coincide with the time course of inositol 1,4,5-trisphosphate (IP3) production. IP3 was elevated at the earliest time measured, 15 s, and then slowly declined so that by 5 min IP3 levels were only 50% of maximal. Diacylglycerol levels, in contrast, were not elevated for the first 2 min and then peaked at 5 min. These data indicate that hydrolysis of phosphatidylinositol 4,5-bisphosphate was not the major source of the diacylglycerol peak at 5 min. To investigate the source of diacylglycerol, I examined the fatty acid composition of the diacylglycerol by prelabeling the cells with [3H]palmitic acid and [14C]stearic acid. The 14C/3H ratio in diacylglycerol should reflect the phospholipid(s) from which it is derived. The 14C/3H ratio of the increment in diacylglycerol produced by carbachol and bradykinin was intermediate between the 14C/3H ratios of phosphatidylcholine and phosphatidylinositol. The 14C/3H ratio in triacylglycerol was similar to that of phosphatidylcholine. These data indicate that carbachol and bradykinin stimulate the formation of diacylglycerol from sources other than inositol-containing phospholipids; phosphatidylcholine and triacylglycerol are two possible sources of this diacylglycerol.  相似文献   

5.
Hydrolysis of exogenous phosphatidylcholine (PtdCho) to 1,2-diacylglycerol by rat liver plasma membranes was stimulated by oleate concentrations as low as 0.1 mM. In the presence of 75 mM ethanol, the fatty acid also enhanced phosphatidylethanol (PtdEtOH) formation from PtdCho. These effects were also observed with linoleate and arachidonate, but not with saturated fatty acids or detergents, and were minimal in microsomes or mitochondria. Release of [3H]choline from exogenous Ptd[3H]Cho was stimulated by oleate, whereas phosphoryl[3H]choline formation was inhibited. Oleate and other unsaturated, but not saturated, fatty acids also stimulated the conversion of exogenous [14C]phosphatidic acid to [14C]diacylglycerol. These data are consistent with stimulatory effects of these fatty acids on both phospholipase D and phosphatidate phosphohydrolase in liver plasma membranes. The stimulatory effect of guanosine 5'-O-[3-thio]triphosphate) (20 microM) on PtdEtOH and diacylglycerol formation from PtdCho was enhanced by low concentrations of oleate. Phospholipase A2 also stimulated PtdEtOH and diacylglycerol formation from exogenous PtdCho. It is proposed that unsaturated fatty acids may play a physiological role in the regulation of diacylglycerol production through activation of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

6.
We report for the first time that phospholipase D activity in sea urchin spermatozoa can be regulated by a component of egg jelly known to induce an acrosome reaction. The fucose-sulfate glycoconjugate (FSG) of egg jelly that induces an acrosome reaction in spermatozoa caused Ca2+-dependent increases in 1,2-diacylglycerol and phosphatidic acid. Diacylglycerol concentrations were increased 2-fold, and phosphatidic acid concentrations were elevated up to 10-fold 2 min after the addition of FSG to spermatozoa. FSG also caused increases in choline, but not in choline phosphate concentrations. Neither phosphorylation of diacylglycerol nor de novo synthesis from glycerol were significant routes of synthesis of phosphatidic acid during the acrosome reaction. When spermatozoa were incubated with FSG in the presence of ethanol, phosphatidylethanol was produced. As ethanol concentrations in the extracellular medium were increased from 0.1 to 2.5%, the amount of phosphatidylethanol increased, whereas phosphatidic acid concentrations decreased, suggesting a competitive transphosphatidylation reaction catalyzed by phospholipase D. Furthermore, when a phosphatidylcholine pool in spermatozoa was radiolabeled using [3H]1-O-alkyl-2-lyso-glycerol-3-phosphorylcholine, the subsequent addition of FSG caused a 4-fold accumulation of [3H]phosphatidic acid. FSG-induced elevations in [3H]phosphatidic acid were positively correlated with the percent of cells that had undergone an acrosome reaction.  相似文献   

7.
We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of [3H]choline and [3H]phosphorylcholine ([3H]Pchol) from cells containing [3H]choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of [3H]phosphatidic acid ([3H]PA) in cells containing [3H]myristate-labeled PC. [3H]Diacylglycerol ([3H]DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with [3H]myristate and [14C]arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol. By analyzing the increase in 3H versus 14C in DAG, we estimate that the DAG that is formed in response to PMA arises largely from PC. Muscarinic receptor activation also causes formation of DAG from PC, but approximately 20% of carbachol-stimulated DAG appears to arise from hydrolysis of the phosphoinositides.  相似文献   

8.
Phosphatidic acid has been proposed to contribute to the mitogenic actions of various growth factors. In32P-labeled neonatal rat cardiac fibroblasts, 100 nM [Sar1]angiotensin II was shown to rapidly induce formation of32P-phosphatidic acid. Levels peaked at 5 min (1.5-fold above control), but were partially sustained over 2 h. Phospholipase D contributed in part to phosphatidic acid formation, as32P- or3H-phosphatidylethanol was produced when cells labeled with [32P]H3PO4 or 1-O-[1,2-3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine were stimulated in the presence of 1% ethanol. [Sar1]angiotensin II-induced phospholipase D activity was transient and mainly mediated through protein kinase C (PKC), since PKC downregulation reduced phosphatidylethanol formation by 68%. Residual activity may have been due to increased intracellular Ca2+, as ionomycin also activated phospholipase D in PKC-depleted cells. Phospholipase D did not fully account for [Sar1]angiotensin II-induced phosphatidic acid: 1) compared to PMA, a potent activator of phospholipase D, [Sar1]angiotensin II produced more phosphatidic acid relative to phosphatidylethanol, and 2) PKC downregulation did not affect [Sar1]angiotensin II-induced phosphatidic acid formation. The diacylglycerol kinase inhibitor R59949 depressed [Sar1]angiotensin II-induced phosphatidic acid formation by only 21%, indicating that activation of a phospholipase C and diacylglycerol kinase also can not account for the bulk of phosphatidic acid. Thus, additional pathways not involving phospholipases C and D, such asde novo synthesis, may contribute to [Sar1]angiotensin II-induced phosphatidic acid in these cells. Finally, as previously shown for [Sar1]angiotensin II, phosphatidic acid stimulated mitogen activated protein (MAP) kinase activity. These results suggest that phosphatidic acid may function as an intracellular second messenger of angiotensin II in cardiac fibroblasts and may contribute to the mitogenic action of this hormone on these cells. (Mol Cell Biochem141: 135–143, 1994)Abbreviations DAG diacylglycerol - DMSO dimethyl sulfoxide - lysoPC 1-O-hexadecyl-2-lyso-sn-glycero-3-phosphocholine - NRCF newborn rat cardiac fibroblasts - PA phosphatidic acid - PAPase phosphatidic acid phosphohydrolase - PC phosphatidylcholine - PEt phosphatidylethanol - PI phosphatidylinositol - PL (labeled) phospholipids - PLC phospholipase C - PLD phospholipase D Drs. G. W. Booz and M. M. Taher contributed equally to the work described here.  相似文献   

9.
Although it is well-established that inositol-containing lipids serve as precursors of intracellular second messenger molecules in chromaffin cells, we describe some findings that show the formation of diacylglycerol from phosphatidylcholine in response to agonist-mediated stimulation. Stimulation of chromaffin cells by acetylcholine produced a high turnover of phosphatidylcholine, as suggested by the release of [3H]choline derived from [3H]-phosphatidylcholine in experiments performed with [3H]choline chloride-prelabeled cells. An enhanced breakdown of phosphatidylcholine was also inferred from the finding of an increased formation of [3H]diacylglycerol in chromaffin cells prelabeled with [3H]glycerol. The diacylglycerol mass that accumulated after stimulation showed a distinct temporal course and seemed to exceed the mass that has been reported to be derived from phosphatidylinositol. In keeping with the purported origin from phosphatidylcholine, diacylglycerol showed a high content in [3H]oleate molecular species. Phospholipase D activity measurements and experiments performed in the presence of propranolol (an inhibitor of phosphatidic acid:phosphohydrolase) suggested that phosphatidylcholine is hydrolyzed by a phospholipase D activity, producing phosphatidic acid, which is subsequently degraded to diacylglycerol, rather than by a phospholipase C. Incubation of chromaffin cells in the presence of atropine before addition of acetylcholine showed complete inhibition of the increased formation of [3H]-diacylglycerol, whereas d-tubocurarine failed to do so. Taken together, these results suggest that acetylcholine activates phosphatidylcholine breakdown and diacylglycerol formation in chromaffin cells via a muscarinic-type receptor.  相似文献   

10.
The agonist stimulation of a variety of cells results in the induction of specific lipid metabolism in nuclear membranes, supporting the hypothesis of an important role of the lipids in nuclear signal transduction. While the existence of a phosphatidylinositol cycle has been reported in cellular nuclei, little attention has been given to the metabolism of phosphatidylcholine in nuclear signaling. In the present study the metabolism of phosphatidylcholine in the nuclei of neuro-blastoma cells LA-N-1 was investigated. The incubation of LA-N-1 nuclei with radioactive choline, phosphocholine or CDP-choline led to the production of labelled phosphatidylcholine. The incorporation of choline and phosphocholine but not CDP-choline was enhanced in nuclei of TPA treated cells. Moreover the presence of choline kinase, phosphocholine cytidylyltransferase and phosphocholine transferase activities were detected in the nuclei and the TPA treatment of the cells stimulated the activity of the phosphocholine cytidylyltransferase. When cells prelabelled with [3H]palmitic acid were stimulated with TPA in the presence of ethanol, an increase of labelled diacylglycerol and phosphatidylethanol in the nuclei was observed. Similarly, an increase of labelled diacylglycerol and phosphatidic acid but not of phosphatidylethanol occurred in [3H]palmitic acid prelabelled nuclei stimulated with TPA in the presence of ethanol. However the production of phosphatidylethanol was observed when the nuclei were treated with TPA in the presence of ATP and GTPS. The stimulation of [3H]choline prelabelled nuclei with TPA also generated the release of free choline and phosphocholine. The results indicate the presence of PLD and probably PLC activities in LA-N-1 nuclei and the involvement of phosphatidylcholine in the production of nuclear lipid second messengers upon TPA stimulation of LA-N-1 cells. The correlation of the disappearance of phosphatidylcholine, the production of diacylglycerol and phosphatidic acid with the stimulation of phosphatidylcholine synthesis in nuclei of TPA treated LA-N-1 suggests the existence of a phosphatidylcholine cycle in these nuclei.  相似文献   

11.
The ability of bradykinin to stimulate phosphodiesteratic cleavage of phosphatidylcholine (PC) was investigated in bovine pulmonary artery endothelial cells prelabeled with [3H]choline and [3H]myristic acid. Both labels were preferentially (approximately 80%) incorporated into PC. Bradykinin stimulated a rapid and parallel increase in approximately equivalent amounts of water soluble ([3H]choline plus [3H]phosphocholine) and lipid ([3H]phosphatidic acid plus [3H]diacylglycerol) phosphodiesteratic cleavage products of PC. Formation of the phosphodiesteratic cleavage products occurred prior to the maximum rate of release of prostacyclin into the medium, and ED50 values for both responses were similar (less than 1 nM) and consistent with effects mediated by a high affinity bradykinin receptor. These findings suggest that phosphodiesteratic cleavage of PC may be an important event in the process of receptor-dependent endothelial cell activation.  相似文献   

12.
In this study we provide evidence for the involvement of protein kinase C (PKC) in phorbol diester-induced phosphatidylcholine (PC) hydrolysis by the phospholipase D pathway. Rat embryo fibroblasts (REF52) were prelabeled with either tritiated choline or myristic acid; these compounds are preferentially incorporated into cellular PC. Phorbol diester-induced PC degradation was determined by measuring the release of [3H]choline, and the formation of [3H]myristoyl-containing phosphatidate (PA), diacylglycerol (DG), and phosphatidylethanol (PE). Staurosporine, a PKC inhibitor, blocked from 73 to 90% of the phorbol diester-induced PC hydrolysis. The inhibition of phorbol diester-induced choline release by staurosporine was dose dependent with an approximate ED50 of 150 nM. Pretreatment of cells with phorbol diester inhibited subsequent phorbol diester-induced PC degradation by 78-92%. A close correlation between the ED50 for phorbol diester-stimulated choline release and the Kd for phorbol diester binding was demonstrated. Neither forskolin nor dibutyryl cAMP elicited cellular PC degradation. In vitro experiments using phospholipase D from Streptomyces chromofuscus showed that staurosporine did not inhibit and TPA did not stimulate enzyme activity.  相似文献   

13.
The enzymatic pathways for formation of 1,2-diradylglyceride in response to epidermal growth factor in human dermal fibroblasts have been investigated. 1,2-Diradylglyceride mass was elevated 2-fold within one minute of addition of EGF. Maximal accumulation (4-fold) occurred at 5 minutes. Since both diacyl and ether-linked diglyceride species occur naturally and may accumulate following agonist activation, we developed a novel method to determine separately the alterations in diacyl and ether-linked diglycerides following stimulation of fibroblasts with EGF. Utilizing this method, it was found that approximately 80% of the total cellular 1,2-diradylglyceride was diacyl, the remaining 20% being ether-linked. Addition of EGF caused accumulation of 1,2-diacylglyceride without alteration in the level of ether-linked diglyceride. Thus, the observed induction of 1,2-diradylglyceride by EGF was due exclusively to increased formation of 1,2-diacylglyceride. In cells labelled with [3H]choline, the water soluble phosphatidylcholine hydrolysis products, phosphorylcholine and choline, were increased 2-fold within 5 minutes of addition of EGF. No hydrolysis of phosphatidylethanolamine, phosphatidylserine, or phosphatidylinositol was observed. Quantitation by radiolabel and mass revealed equivalent elevations in phosphorylcholine and choline, suggesting stimulation of both phospholipase C and phospholipase D activities. To identify the presence of EGF-induced phospholipase D activity, cells were labelled with exogenous [3H]1-0-hexadecyl, 2-acyl phosphatidylcholine and its conversion to phosphatidic acid in response to EGF determined. Radiolabelled phosphatidic acid was detectable in 15 seconds after addition of EGF and was maximal (3-fold) at 30 seconds. Consistent with the presence of EGF-induced phospholipase D activity, treatment of cells with EGF, in the presence of [14C]ethanol, resulted in the rapid formation of [14C]phosphatidylethanol, the product of phospholipase D-catalyzed transphosphatidylation. The formation of phosphatidylethanol, which competes for the formation of phosphatidic acid by phospholipase D, did not diminish the induction of 1,2-diglyceride by EGF. These data suggest that the phosphatidic acid formed by phospholipase D-catalyzed hydrolysis of phosphatidylcholine is not a major precursor of the observed increased 1,2-diglyceride. Thus, the induction of 1,2-diacylglycerol by EGF may occur primarily via phospholipase C-catalyzed hydrolysis of phosphatidylcholine.  相似文献   

14.
1-[14C]Palmitoyl-2-[3H]arachidonoyl-sn-glycerol 3-phosphate was hydrolyzed to form [14C]palmitic acid and 2-[3H]arachidonoyl-glycerophosphate by porcine platelet membranes. This phospholipase A1 activity was relatively specific for phosphatidic acid; the addition of several other phospholipids in equimolar amounts did not have a significant effect on the hydrolysis of radiolabeled phosphatidic acid, and the specific activity for phosphatidic acid hydrolysis was 20-fold higher than that of the hydrolysis of phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol under the conditions used. This phospholipase A1 acting on phosphatidic acid has properties different from those reported for other phospholipases and lipases present in platelets.  相似文献   

15.
The metabolism of phosphatidylcholine (PC) was investigated in sonicated suspensions of bovine pulmonary artery endothelial cells and in subcellular fractions using two PC substrates: 1-oleoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho[14C]choline. When these substrates were incubated with the whole cell sonicate at pH 7.5, all of the metabolized 3H label was recovered in [3H]oleic acid (95%) and [3H]diacylglycerol (5%). All of the 14C label was identified in [14C]lysoPC (92%) and [14C]phosphocholine (8%). These data indicated that PC was metabolized via phospholipase(s) A and phospholipase C. Substantial diacylglycerol lipase activity was identified in the cell sonicate. Production of similar proportions of diacylglycerol and phosphocholine and the low relative activity of phospholipase C compared to phospholipase A indicated that the phospholipase C-diacylglycerol lipase pathway contributed little to fatty acid release from the sn-2 position of PC. Neither phospholipase A nor phospholipase C required Ca2+. The pH profiles and subcellular fractionation experiments indicated the presence of multiple forms of phospholipase A, but phospholipase C activity displayed a single pH optimum at 7.5 and was located exclusively in the particulate fraction. The two enzyme activities demonstrated differential sensitivities to inhibition by p-bromophenacylbromide, phenylmethanesulfonyl fluoride and quinacrine. Each of these agents inhibited phospholipase A, whereas phospholipase C was inhibited only by p-bromophenacylbromide. The unique characteristics observed for phospholipase C activity towards PC indicated the existence of a novel enzyme that may play an important role in lipid metabolism in endothelial cells.  相似文献   

16.
Saturated phosphatidylcholine and phosphatidylglycerol are important components of pulmonary surface active material, but the relative contributions of different pathways for the synthesis of these two classes of phospholipids by alveolar type II cells are not established. We purified freshly isolated rat type II cells by centrifugal elutriation and incubated them with [1-14C]palmitate as the sole exogenous fatty acid in one series of experiments or with [9,10-3H]palmitate, mixed fatty acids (16:0, 18:1 and 18:2), and [U-14C]glucose in another series of experiments. Type II cells readily incorporated [1-14C]palmitate into saturated phosphatidic acid (55-59% of total phosphatidic acid), saturated diacylglycerol (82-87% of total diacylglycerol), saturated phosphatidylcholine (69-76% of total phosphatidylcholine), and saturated phosphatidylglycerol (55-59% of total phosphatidylglycerol). Saturated phosphatidic acid, diacylglycerol and phosphatidylglycerol were nearly equally labeled in the sn-1 and sn-2 positions, whereas saturated phosphatidylcholine was preferentially labeled in the sn-2 position. With [9,10-3H]palmitate and [U-14C]glucose, the labeling patterns of phosphatidic acid, diacylglycerol and phosphatidylglycerol were similar to each other but different from that of phosphatidylcholine. The glucose label was found predominantly in the unsaturated phosphatidylcholines at early times (3-10 min) and in the saturated phosphatidylcholines at later times (30-90 min). Similarly, the 3H/14C ratio was very high in saturated phosphatidylcholine and always above that in saturated diacylglycerol. We conclude that freshly isolated type II cells synthesize saturated phosphatidic acid, diacylglycerol, phosphatidylcholine and phosphatidylglycerol and that under our in vitro conditions the deacylation-reacylation pathway is important for the synthesis of saturated phosphatidylcholine but is less important for the synthesis of saturated phosphatidylglycerol. By the assumptions stated in the text during the pulse chase experiment de novo synthesis of saturated phosphatidylcholine from saturated diacylglycerol accounted for 25% of the total synthesis of saturated phosphatidylcholine.  相似文献   

17.
Cultured endothelial cells from human umbilical vein were incubated for 20 h at 37 degrees C in the presence of [U-14C]arachidonic acid. Around 60-70% of the radioactive fatty acid was incorporated into cell lipids and was predominantly found in phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and triacylglycerol (39%, 33%, 13% and 6.5% of total incorporated radioactivity, respectively). Stimulation of the cells with human thrombin (2 U/ml) or calcium ionophore A23187 (5 microM) promoted the release into supernatants of arachidonic acid, 6-ketoprostaglandin F1 alpha, prostaglandins E2 and F2 alpha, in decreasing order of importance. The amount of secreted material was 4-fold higher with A23187, compared to thrombin. Parallel to the liberation process, phosphatidylcholine underwent a rapid decrease of radioactivity with both agonists, suggesting the involvement of a Ca2+-dependent phospholipase A2. Phosphatidylethanolamine displayed a minor decrease with A23187, whereas some reacylation was observed at 10 min with thrombin. Phosphatidylinositol was non-significantly affected in thrombin-stimulated cells, whereas A23187 promoted an early but minor decrease, followed by resynthesis. In contrast to A23187, thrombin was also able to promote a significant hydrolysis of triacylglycerol, which might thus be implicated in the process of arachidonate liberation. Finally, radioactive phosphatidic acid and diacylglycerol appeared in endothelial cells, in response to the two agonists. However, diacylglycerol formation did not parallel that of phosphatidic acid, especially with A23187. Determination of the 14C/3H ratio of the different lipids upon cell labelling with both [14C]arachidonic acid and [3H]palmitic acid revealed that diacylglycerol and phosphatidic acid are hardly derived from inositol-phospholipid breakdown by phospholipase C. Other possible pathways involving for instance phospholipase C splitting of phosphatidylcholine are discussed.  相似文献   

18.
Rat pancreatic acinar cells prelabeled with [14C]palmitic acid and then exposed to carbachol (CCh) exhibited a time-dependent increase in 1,2-[14C]diacylglycerol ([14C]DAG) levels, which was first detected at 2 min and then continued to rise in a linear manner. There was a concomitant increase in [14C]phosphatidic acid, which plateaued after 2 min and then remained at steady-state levels. CCh also promoted the release of phosphocholine, but not choline, within 60 s and caused a decrease in [14C]phosphatidylcholine in cells prelabeled with [14C]glycerol after 15 min. The inability to detect a rise in [14C]phosphatidylethanol accumulation and a fall in [14C]phosphatidate levels in [14C]palmitate prelabeled cells after exposure to CCh plus ethanol documented the absence of a phospholipase D-mediated pathway. The rapid phosphorylation of diglyceride in homogenates from unstimulated and carbachol-treated cells increased with increasing concentrations of exogenous substrate, thereby affirming that carbachol stimulates the phosphorylation of DAG by promoting the accumulation of the diglyceride. These collective findings provide evidence for the existence of an integrative control mechanism for regulating endogenous DAG levels during pancreatic acinar cell activation involving phosphatidylcholine-specific phospholipase C and DAG kinase.  相似文献   

19.
The role of lipid-bound second messengers in the regulation of neurotransmitter secretion is an important but poorly understood subject. Both bovine adrenal chromaffin cells and rat phoeochromocytoma (PC12) cells, two widely studied models of neuronal function, respond to bradykinin by generating phosphatidic acid (PA). This putative second messenger may be produced by two receptor-linked pathways: sequential action of phospholipase C (PLC) and diacylglycerol kinase (DAG kinase), or directly by phospholipase D (PLD). Here we show that bradykinin stimulation of chromaffin cells prelabelled (24 h) with 32Pi leads to production of [32P]PA which is not affected by 50 mM butanol. However, bradykinin stimulation of PC12 cells leads to [32P]PA formation, all of which is converted to phosphatidylbutanol in the presence of butanol. When chromaffin cells prelabelled with [3H]choline were stimulated with bradykinin there was no enhancement of formation of water soluble products of phosphatidylcholine hydrolysis. When chromaffin cells were permeabilised with pneumolysin and incubated in the presence of [gamma-32P]ATP, the formation of [32P]PA was still stimulated by bradykinin. These results show that, although both neuronal models synthesize PA in response to bradykinin, they do so by quite different routes: PLC/DAG kinase for chromaffin cells and PLD for PC12 cells. The observation that neither bradykinin nor tetradecanoyl phorbol acetate stimulate PLD in chromaffin cells suggests that these cells lack PLD activity. The conservation of PA formation, albeit by different routes, may indicate an essential role of PA in the regulation of cellular events by bradykinin.  相似文献   

20.
Bovine pulmonary artery endothelial cells (BPAEC) were prelabeled with [3H]choline or [3H]myristic acid to selectively label endogenous phosphatidylcholine. BPAEC were stimulated with ATP and bradykinin (BK), and phospholipase D (PLD) activation was detected as a 4-fold increase in [3H]choline in cells prelabeled with [3H]choline or as a 2- to 3-fold increase in [3H]phosphatidylethanol in cells prelabeled with [3H]myristic acid and stimulated in the presence of ethanol. Pretreatment of BPAEC with 0.1 microM phorbol 12-myristate 13-acetate (PMA) for 22 hr completely inhibited agonist-induced PLD activation, whereas prostacyclin synthesis and [3H]phosphoinositide ([3H]PIns) hydrolysis were enhanced in pretreated cells. Long-term PMA treatment thus dissociates agonist-induced PLD activation from [3H]PIns hydrolysis, and agonist-induced prostacyclin synthesis is not dependent upon PLD activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号