首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morgan-Kiss RM  Ivanov AG  Huner NP 《Planta》2002,214(3):435-445
State I-State II transitions were monitored in vivo and in vitro in the Antarctic, psychrophillic, green alga, Chlamydomonas subcaudata, as changes in the low-temperature (77 K) chlorophyll fluorescence emission maxima at 722 nm (F722) relative to 699 nm (F699). As expected, the control mesophillic species, Chlamydomonas reinhardtii, was able to modulate the light energy distribution between photosystem II and photosystem I in response to exposure to four different conditions: (i) dark/anaerobic conditions, (ii) a change in Mg2+ concentration, (iii) red light, and (iv) increased incubation temperature. This was correlated with the ability to phosphorylate both of its major light-harvesting polypeptides. In contrast, exposure of C. subcaudata to the same four conditions induced minimum alterations in the 77 K fluorescence emission spectra, which was correlated with the ability to phosphorylate only one of its major light-harvesting polypeptides. Thus, C. subcaudata appears to be deficient in the ability to undergo a State I-State II transition. Functionally, this is associated with alterations in the apparent redox status of the intersystem electron transport chain and with higher rates of photosystem I cyclic electron transport in the psychrophile than in the mesophile, based on in vivo P700 measurements. Structurally, this deficiency is associated with reduced levels of Psa A/B relative to D1, the absence of specific photosystem I light-harvesting polypeptides [R.M. Morgan et al. (1998) Photosynth Res 56:303-314] and a cytochrome b6/f complex that exhibits a form of cytochrome f that is approximately 7 kDa smaller than that observed in C. reinhardtii. We conclude that the Antarctic psychrophile, C. subcaudata, is an example of a natural variant deficient in State I-State II transitions.  相似文献   

2.
3.
Thylakoid protein phosphorylation and the thiol redox state   总被引:8,自引:0,他引:8  
Illumination of thylakoid membranes leads to the phosphorylation of a number of photosystem II-related proteins, including the reaction center proteins D1 and D2 as well as the light-harvesting complex (LHCII). Regulation of light-activated thylakoid protein phosphorylation has mainly been ascribed to the redox state of the electron carrier plastoquinone. In this work, we show that this phosphorylation in vitro is also strongly influenced by the thiol disulfide redox state. Phosphorylation of the light-harvesting complex of photosystem II was found to be favored by thiol-oxidizing conditions and strongly downregulated at moderately thiol-reducing conditions. In contrast, phosphorylation of the photosystem II reaction center proteins D1 and D2 as well as that of other photosystem II subunits was found to be stimulated up to 2-fold by moderately thiol-reducing conditions and kept at a high level also at highly reducing conditions. These responses of the level of thylakoid protein phosphorylation to changes in the thiol disulfide redox state are reminiscent of those observed in vivo in response to changes in the light intensity and point to the possibility of a second loop of redox regulation of thylakoid protein phosphorylation via the ferredoxin-thioredoxin system.  相似文献   

4.
In photosynthesis in chloroplasts, control of thylakoid protein phosphorylation by redox state of inter-photosystem electron carriers makes distribution of absorbed excitation energy between the two photosystems self-regulating. During operation of this regulatory mechanism, reduction of plastoquinone activates a thylakoid protein kinase which phosphorylates the light-harvesting complex LHC II, causing a change in protein recognition that results in redistribution of energy to photosystem I at the expense of photosystem II, thus tending to oxidise the reduced plastoquinone pool. These events correspond to the transition from light-state 1 to light-state 2. The reverse transition (to light-state 1) is initiated by transient oxidation of plastoquinone, inactivation of the LHC II kinase, and return of dephosphorylated LHC II from photosystem I to photosystem II, supplying excitation energy to photosystem II and thereby reducing plastoquinone. State 1-state 2 transitions therefore operate by means of redox control of reversible, post-translational modification of pre-existing proteins. A balance in the rates of light utilization by photosystem I and photosystem II can also be achieved, on longer time-scales and between wider limits, by adjustment of the relative quantities, or stoichiometry, of photosystem I and photosystem II. Recent evidence suggests that adjustment of photosystem stoichiometry is also a response to perturbation of the redox state of inter-photosystem electron carriers, and involves specific redox control of de novo protein synthesis, assembly, and breakdown. It is therefore suggested that the same redox sensor initiates these different adaptations by control of gene expression at different levels, according to the time-scale and amplitude of the response. This integrated feedback control may serve to maintain redox homeostasis, and, as a result, quantum yield. Evidence for the components required by such systems is discussed.  相似文献   

5.
6.
Photosynthetic activities were analyzed in Chlamydomonas reinhardtii mitochondrial mutants affected in different complexes (I, III, IV, I + III, and I + IV) of the respiratory chain. Oxygen evolution curves showed a positive relationship between the apparent yield of photosynthetic linear electron transport and the number of active proton-pumping sites in mitochondria. Although no significant alterations of the quantitative relationships between major photosynthetic complexes were found in the mutants, 77 K fluorescence spectra showed a preferential excitation of photosystem I (PSI) compared with wild type, which was indicative of a shift toward state 2. This effect was correlated with high levels of phosphorylation of light-harvesting complex II polypeptides, indicating the preferential association of light-harvesting complex II with PSI. The transition to state 1 occurred in untreated wild-type cells exposed to PSI light or in 3-(3,4-dichlorophenyl)-1,1-dimethylureatreated cells exposed to white light. In mutants of the cytochrome pathway and in double mutants, this transition was only observed in white light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. This suggests higher rates of nonphotochemical plastoquinone reduction through the chlororespiratory pathway, which was confirmed by measurements of the complementary area above the fluorescence induction curve in dark-adapted cells. Photo-acoustic measurements of energy storage by PSI showed a stimulation of PSI-driven cyclic electron flow in the most affected mutants. The present results demonstrate that in C. reinhardtii mutants, permanent defects in the mitochondrial electron transport chain stabilize state 2, which favors cyclic over linear electron transport in the chloroplast.  相似文献   

7.
The unicellular Cyanobacterium Cyanothece sp. ATCC 51142, grown under alternating 12-h light/12-h dark conditions, temporally separated N2 fixation from photosynthesis. The regulation of photosynthesis was studied using fluorescence spectra and kinetics to determine changes in state transitions and photosystem organization. The redox poise of the plastoquinone (PQ) pool appeared to be central to this regulation. Respiration supported N2 fixation by oxidizing carbohydrate granules, but reduced the PQ pool. This induced state 2 photosystem II monomers and lowered the capacity for O2 evolution. State 2 favored photosystem I trimers and cyclic electron transport, which could stimulate N2 fixation; the stimulation suggested an ATP limitation to N2 and CO2 fixation. The exhaustion of carbohydrate granules at around 6 h in the dark resulted in reduced respiratory electron flow, which led to a more oxidized PQ pool and produced a sharp transition from state 2 to state 1. This transient state 1 returned to state 2 in the remaining hours of darkness. In the light phase, photosystem II dimerization correlated with increased phycobilisome coupling to photosystem II (state 1) and increased rates of O2 evolution. However, dark adaptation did not guarantee state 2 and left photosystem I centers in a mostly monomeric state at certain times.  相似文献   

8.
Wilson KE  Król M  Huner NP 《Planta》2003,217(4):616-627
When cells of the green alga Chlorella vulgaris Beij. are transferred from growth at 5 degrees C and an irradiance of 150 micromol photons m(-2) s(-1) to 27 degrees C and the same irradiance, they undergo what is normally considered a high-light to low-light phenotypic change. This involves a 3-fold increase in cellular chlorophyll content with a concomitant increase in light-harvesting complex polypeptide levels. This process appears to occur in response to the cellular capacity to utilize the products of photosynthesis, with the redox state of the plastoquinone pool sensing the cellular energy balance. The phenotypic adjustment can be enhanced or blocked using chemical inhibitors that modulate the redox state of the plastoquinone pool. The functional changes in the photosynthetic apparatus that occurred during the high-light to low-light acclimation were examined with special consideration paid to the paradox that 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated cells, with non-functional photosystem II (PSII), accumulate light-harvesting polypeptides. At the structural and basic functional levels, the light-harvesting complex of the cells treated with DCMU was indistinguishable from that of the untreated, control cells. To examine how PSII was protected in the DCMU-treated cells, we measured the content of xanthophyll-cycle pigments. It appeared that a zeaxanthin-dependent nonphotochemical quenching process was involved in PSII protection during greening in the presence of DCMU. Metabolic inhibitors of mitochondrial respiration were used to examine how the change in cellular energy balance regulates the greening process. Apparently, the mitochondrion acts to supply energy to the chloroplast during greening, and inhibition of mitochondrial respiration diminishes chlorophyll accumulation apparently through an increase in the redox state of the plastoquinone pool.  相似文献   

9.
《BBA》1985,809(2):277-283
The reorganization of the light-harvesting antenna in the thylakoid membranes upon phosphorylation of some of its apoproteins was further characterized in vivo using the green algae Chlamydomonas reinhardtii. To this end we have studied light-to-dark transitions on intact cells placed in the anaerobic state using the F34 mutant strain which lacks PS II centers. We show that the 50% decrease in fluorescence yield in such transitions is accompanied by a 50% increase in PS I antenna size. The half-times of the kinetics of the fluorescence changes in the dark-to-light and light-to-dark transitions are of 320 and 120 s, respectively. The rate-limiting steps in these transitions are attributed to the dephosphorylation and phosphorylation processes themselves rather than to the activation of the kinase or to the diffusion of the phosphorylated complexes in the thylakoid membrane. Accordingly, the changes in phosphorylation of three of the main phosphopolypeptides occur with the same kinetics as those of the fluorescence changes. Different phosphorylation kinetics are observed for two phosphopolypeptides which are, however, also part of the light-harvesting complexes. Possible heterogeneities in the kinase enzymatic activities are discussed. The peculiar status of the phosphopolypeptide D2, associated with the PS II center, is described.  相似文献   

10.
11.
Phycobiliproteins obtained by dissociation of phycobilisomes were reassociated in vitro with intact thylakoids or isolated photosystems I and II preparations obtained from cyanophytes (prokaryotes) or green algae (eukaryotes) to form bound phycobilisome complexes. Energy transfer from Fremyella diplosiphon phycobiliproteins to chlorophyll a of reaction centers I and II was measured in: complexes containing intact thylakoids of the cyanophytes F. diplosiphon or Anacystis nidulans and the eukaryotic algae Euglena gracilis and mutants of Chlamydomonas reinhardtii; complexes containing isolated photosystem II particles of A. nidulans or C. reinhardtii; and complexes containing reaction center I of F. diplosiphon or C. reinhardtii. Energy transfer from phycoerythrin to chlorophyll a of photosystem II could be demonstrated in complexes containing phycobilisomes bound to cyanophyte thylakoids or isolated photosystem II particles of A. nidulans or C. reinhardtii. Bound phycobilisomes did not transfer energy to photosystem II within green algae thylakoids containing altered forms of light-harvesting chlorophyll a/b-protein complex (LHC) II antenna, reduced amounts of LHC II, or chlorophyll b, or chlorophyll b-less mutants, nor to chlorophyll a of photosystem I of intact thylakoids or isolated reaction centers. We conclude that phycobilisomes can form a specific and functional association with photosystem II particles of both cyanophytes and eukaryotic thylakoids. This interaction appears to be hindered by the presence of LHC II antenna in the eukaryotic thylakoids.  相似文献   

12.
The mechanism by which state 1-state 2 transitions in the cyanobacterium Synechococcus 6301 are controlled was investigated by examining the effects of a variety of chemical and illumination treatments which modify the redox state of the plastoquinone pool. The extent to which these treatments modify excitation energy distribution was determined by 77K fluorescence emission spectroscopy. It was found that treatment which lead to the oxidation of the plastoquinone pool induce a shift towards state 1 whereas treatments which lead to the reduction of the plastoquinone pool induce a shift towards state 2. We therefore propose that state transitions in cyanobacteria are triggered by changes in the redox state of plastoquinone or a closely associated electron carrier. Alternative proposals have included control by the extent of cyclic electron transport around PS I and control by localised electrochemical gradients around PS I and PS II. Neither of these proposals is consistent with the results reported here.Abbreviations DBMIB 2,5-dibromo-3methyl-6-isopropyl-p-benzoquinone - Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DQH2 duroquinol (tetramethyl-p-hydroquinone) - LHC II light-harvesting chlorophyll a/b-binding protein of PS II - Light 1 light predominantly exciting PS I - Light 2 light predominantly exciting PS II - M.V. methyl viologen - PS photosystem  相似文献   

13.
When the capacity of leaves for orderly dissipation of excitation energy in photosynthesis is exceeded, one mechanism by which the excess energy appears to be dissipated is through a nonradiative decay process. This process is observed as a reversible quenching of chlorophyll fluorescence emission (77K) from both photosystem II and photosystem I which persists in darkness (Demmig and Björkman 1987, Planta 171, 171–184). Fluorescence quenching was induced in soybean (Glycine max (L.) Merr.) leaves by two methods: 1) changing the composition of the gas surrounding the leaf from normal air to 2% O2, 0% CO2 at a low, constant photon flux density (PFD=photon fluence rate), and 2) increasing the PFD in the presence of normal air. In either case the quenching was fully reversible after return to the original condition (low PFD, normal air). The half-time of the relaxation of the quenching was in the order of 30 min. Both treatments resulted in reversible dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II (LHC-II). Treatment under photoinhibitory conditions (high PFD plus chloramphenicol) also caused dephosphorylation of LHC-II. Therefore, phosphorylation of LHC-II cannot account for the observed fluorescence quenching. In addition, our results indicate that in vivo a factor other than the redox state of the plastoquinone pool controls LHC-II phosphorylation. This factor may be pH, the pH gradient across the thylakoid membranes.Abbreviations and symbols CAP chloramphenicol - Fo, FM, Fv instantaneous, maximumr variable fluorescence emission - LHC-II light-haryesting chlorophyll-protein complex of PSII - kDa kilodalton - pH pH gradient across the thylakoid membrane - PFD photon flux density (photon fluence rate) - PQ plastoquinone - PSI, PSII photosystem I, II - Q acceptor of PSII C.I.W.-D.P.B. Publication No. 926  相似文献   

14.
Kargul J  Barber J 《The FEBS journal》2008,275(6):1056-1068
In order to carry out photosynthesis, plants and algae rely on the co-operative interaction of two photosystems: photosystem I and photosystem II. For maximum efficiency, each photosystem should absorb the same amount of light. To achieve this, plants and green algae have a mobile pool of chlorophyll a/b-binding proteins that can switch between being light-harvesting antenna for photosystem I or photosystem II, in order to maintain an optimal excitation balance. This switch, termed state transitions, involves the reversible phosphorylation of the mobile chlorophyll a/b-binding proteins, which is regulated by the redox state of the plastoquinone-mediating electron transfer between photosystem I and photosystem II. In this review, we will present the data supporting the function of redox-dependent phosphorylation of the major and minor chlorophyll a/b-binding proteins by the specific thylakoid-bound kinases (Stt7, STN7, TAKs) providing a molecular switch for the structural remodelling of the light-harvesting complexes during state transitions. We will also overview the latest X-ray crystallographic and electron microscopy-derived models for structural re-arrangement of the light-harvesting antenna during State 1-to-State 2 transition, in which the minor chlorophyll a/b-binding protein, CP29, and the mobile light-harvesting complex II trimer detach from the light-harvesting complex II-photosystem II supercomplex and associate with the photosystem I core in the vicinity of the PsaH/L/O/P domain.  相似文献   

15.
J F Allen  M A Harrison  N G Holmes 《Biochimie》1989,71(9-10):1021-1028
The function of phosphorylation of light-harvesting polypeptides is well characterised in chloroplasts of green plants, but the prokaryotic cyanobacteria and purple photosynthetic bacteria have quite different light-harvesting polypeptides whose structure and function cannot be controlled in precisely the same way. Nevertheless, cyanobacteria show light-dependent phosphorylation of membrane polypeptides associated with photosystem II and with the light-harvesting phycobilisome, and purple bacteria show light-dependent phosphorylation of low molecular-weight chromatophore membrane polypeptides. In both cases membrane protein phosphorylation is associated with functional changes observed by chlorophyll fluorescence spectroscopy or chlorophyll fluorescence induction kinetics. Here we report on our recent protein sequence and other data concerning the identities of these phosphoproteins. We also discuss the significance of these findings for regulation by protein phosphorylation of photosynthesis in prokaryotes.  相似文献   

16.
PsbW, a 6.1-kDa low-molecular-weight protein, is exclusive to photosynthetic eukaryotes, and associates with the photosystem II (PSII) protein complex. In vivo and in vitro comparison of Arabidopsis thaliana wild-type plants with T-DNA insertion knock-out mutants completely lacking the PsbW protein, or with antisense inhibition plants exhibiting decreased levels of PsbW, demonstrated that the loss of PsbW destabilizes the supramolecular organization of PSII. No PSII-LHCII supercomplexes could be detected or isolated in the absence of the PsbW protein. These changes in macro-organization were accompanied by a minor decrease in the chlorophyll fluorescence parameter F(V) /F(M) , a strongly decreased PSII core protein phosphorylation and a modification of the redox state of the plastoquinone (PQ) pool in dark-adapted leaves. In addition, the absence of PsbW protein led to faster redox changes in the PQ pool, i.e. transitions from state 1 to state 2, as measured by changes in stationary fluorescence (F(S) ) kinetics, compared with the wild type. Despite these dramatic effects on macromolecular structure, the transgenic plants exhibited no significant phenotype under normal growth conditions. We suggest that the PsbW protein is located close to the minor antenna of the PSII complex, and is important for the contact and stability between several PSII-LHCII supercomplexes.  相似文献   

17.
The cytochrome b(6)f (Cyt b(6)f) complex in flowering plants contains nine conserved subunits, of which three, PetG, PetL, and PetN, are bitopic plastid-encoded low-molecular-weight proteins of largely unknown function. Homoplastomic knockout lines of the three genes have been generated in tobacco (Nicotiana tabacum 'Petit Havana') to analyze and compare their roles in assembly and stability of the complex. Deletion of petG or petN caused a bleached phenotype and loss of photosynthetic electron transport and photoautotrophy. Levels of all subunits that constitute the Cyt b(6)f complex were faintly detectable, indicating that both proteins are essential for the stability of the membrane complex. In contrast, DeltapetL plants accumulate about 50% of other Cyt b(6)f subunits, appear green, and grow photoautotrophically. However, DeltapetL plants show increased light sensitivity as compared to wild type. Assembly studies revealed that PetL is primarily required for proper conformation of the Rieske protein, leading to stability and formation of dimeric Cyt b(6)f complexes. Unlike wild type, phosphorylation levels of the outer antenna of photosystem II (PSII) are significantly decreased under state II conditions, although the plastoquinone pool is largely reduced in DeltapetL, as revealed by measurements of PSI and PSII redox states. This confirms the sensory role of the Cyt b(6)f complex in activation of the corresponding kinase. The reduced light-harvesting complex II phosphorylation did not affect state transition and association of light-harvesting complex II to PSI under state II conditions. Ferredoxin-dependent plastoquinone reduction, which functions in cyclic electron transport around PSI in vivo, was not impaired in DeltapetL.  相似文献   

18.
《FEBS letters》1985,179(2):321-324
The hypothesis that excitation energy distribution between PS I and PS II is controlled by the redox state of the plastoquinone pool between the two photosystems was investigated using the green alga Chlorella vulgaris. Changes in the redox state of the pool were monitored by measurement of the area above the fluorescence induction curve on exposure to high-intensity light. In agreement with the hypothesis, exposure of state I adapted cells to light preferentially absorbed by PS II led to a reduction of the plastoquinone pool whilst exposure of State II adapted cells to light preferentially absorbed by PS I resulted in its oxidation. However, the limits within which these fluctuations occurred were much narrower than anticipated. The reasons for this are discussed in terms of the possible involvement of changes in the redox state of more specialised molecules associated with the main plastoquinone pool and the postulated role of plastoquinone as an electron shuttle between the two photosystems.  相似文献   

19.
Winter rye plants grown under contrasting environmental conditions or just transiently shifted to varying light and temperature conditions, were studied to elucidate the chloroplast signal involved in regulation of photosynthesis genes in the nucleus. Photosystem II excitation pressure, reflecting the plastoquinone redox state, and the phosphorylation level of thylakoid light-harvesting proteins (LHCII and CP29) were monitored together with changes occurring in the accumulation of lhcb, rbcS and psbA mRNAs. Short-term shifts of plants to changed conditions, from 1 h to 2 d, were postulated to reveal signals crucial for the initiation of the acclimation process. Comparison of these results with those obtained from plants acclimated during several weeks' growth at contrasting temperature and in different light regimes, allow us to make the following conclusions: (1) LHCII protein phosphoylation is a sensitive tool to monitor redox changes in chloroplasts; (2) LHCII protein phosphorylation and lhcb mRNA accumulation occur under similar conditions and are possibly coregulated via an activation state of the same kinase (the LHCII kinase); (3) Maximal accumulation of lhcb mRNA during the diurnal light phase seems to require an active LHCII kinase whereas inactivation of the kinase is accompanied by dampening of the circadian oscillation in the amount of lhcb mRNA; (4) Excitation pressure of photosystem II (reduction state of the plastoquinone pool) is not directly involved in the regulation of lhcb mRNA accumulation. Instead (5) the redox status of the electron acceptors of photosystem I in the stromal compartment seems to be highly regulated and crucial for the regulation of lhcb gene expression in the nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号