首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synaptic vesicle pools at the frog neuromuscular junction   总被引:12,自引:0,他引:12  
We have characterized the morphological and functional properties of the readily releasable pool (RRP) and the reserve pool of synaptic vesicles in frog motor nerve terminals using fluorescence microscopy, electron microscopy, and electrophysiology. At rest, about 20% of vesicles reside in the RRP, which is depleted in about 10 s by high-frequency nerve stimulation (30 Hz); the RRP refills in about 1 min, and surprisingly, refilling occurs almost entirely by recycling, not mobilization from the reserve pool. The reserve pool is depleted during 30 Hz stimulation with a time constant of about 40 s, and it refills slowly (half-time about 8 min) as nascent vesicles bud from randomly distributed cisternae and surface membrane infoldings and enter vesicle clusters spaced at regular intervals along the terminal. Transmitter output during low-frequency stimulation (2-5 Hz) is maintained entirely by RRP recycling; few if any vesicles are mobilized from the reserve pool.  相似文献   

2.
Kuromi  Hiroshi  Kidokoro  Yoshi 《Brain Cell Biology》2003,32(5-8):551-565
Drosophila neuromuscular junctions (DNMJs) are malleable and its synaptic strength changes with activities. Mobilization and recruitment of synaptic vesicles (SVs), and replenishment of SV pools in the presynaptic terminal are involved in control of synaptic efficacy. We have studied dynamics of SVs using a fluorescent styryl dye, FM1-43, which is loaded into SVs during endocytosis and released during exocytosis, and identified two SV pools. The exo/endo cycling pool (ECP) is loaded with FM1-43 during low frequency nerve stimulation and releases FM1-43 during exocytosis induced by high K+. The ECP locates close to release sites in the periphery of presynaptic boutons. The reserve pool (RP) is loaded and unloaded only during high frequency stimulation and resides primarily in the center of boutons. The size of ECP closely correlates with the efficacy of synaptic transmission during low frequency neuronal firing. An increase of cAMP facilitates SV movement from RP to ECP. Post-tetanic potentiation (PTP) correlates well with recruitment of SVs from RP. Neither PTP nor post-tetanic recruitment of SVs from RP occurs in memory mutants that have defects in the cAMP/PKA cascade. Cyotochalasin D slows mobilization of SVs from RP, suggesting involvement of actin filaments in SV movement. During repetitive nerve stimulation the ECP is replenished, while RP replenishment occurs after tetanic stimulation in the absence of external Ca2+. Mobilization of internal Ca2+ stores underlies RP replenishment. SV dynamics is involved in synaptic plasticity and DNMJs are suitable for further studies.  相似文献   

3.
4.
Frog cutaneous pectoris muscles were treated with low doses of crude black widow spider venom (BWSV) or purified alpha-latrotoxin, and neuromuscular transmission, quantal secretion, changes in ultrastructure and uptake of horseradish peroxidase (HRP) were studied. When these agents were applied to muscles bathed in a Ca2+-free solution with 1 mM EGTA and 4 mM Mg2+, the rate of quantal secretion rose to high levels but quickly subsided; neuromuscular transmission was totally and irreversibly blocked within 1 h. The terminals became swollen and were depleted of vesicles; HRP was not taken up. When BWSV was applied to other muscles bathed in a solution with 1.8 mM Ca2+ and 4 mM Mg2+, the rate of secretion rose to high levels and then declined to intermediate levels that were sustained throughot the hour of exposure. Neuromuscular transmission was blocked in fewer than 50% of these fibers. The ultrastructure of these terminals was normal and they contained large numbers of synaptic vesicles. If HRP had been present, most of the synaptic vesicles were labeled with reaction product. These observations suggest that Ca2+ plays an important role in endocytosis at the frog neuromuscular junction.  相似文献   

5.
We characterized Drosophila endophilin A (D-endoA), and generated and analysed D-endoA mutants. Like its mammalian homologue, D-endoA exhibits lysophosphatidic acid acyl transferase activity and contains a functional SH3 domain. D-endoA is recruited to the sites of endocytosis, as revealed by immunocytochemistry of the neuromuscular junction (NMJ) of mutant L3 larvae carrying the temperature-sensitive allele of dynamin, shibire. D-endoA null mutants show severe defects in motility and die at the early L2 larval stage. Mutants with reduced D-endoA levels exhibit a range of defects of synaptic vesicle endocytosis, as observed at L3 larvae NMJs using FM1-43 uptake and electron microscopy. NMJs with an almost complete loss of synaptic vesicles did not show an accumulation of intermediates of the budding process, whereas NMJs with only slightly reduced levels of synaptic vesicles showed a striking increase in early-stage, but not late-stage, budding intermediates at the plasma membrane. Together with results of previous studies, these observations indicate that endophilin A is essential for synaptic vesicle endocytosis, being required from the onset of budding until fission.  相似文献   

6.
T Naka  N Sakamoto 《Bio Systems》1999,51(2):73-78
A two-dimensional compartment model devised for the appropriate representation of the transient process of the spontaneous generation of miniature endplate current (MEPC) at the neuromuscular junction is applied for clarifying the biochemical significance of the quantal release mechanism of acetylcholine (ACh), a typical neurotransmitter, in the synaptic chemical transmission process. The simulation analysis with the model demonstrates that the localization of the ACh release due to the fusion of a synaptic vesicle with the presynaptic membrane has significant effects on the amplitude of MEPC and that the stronger effects are caused with the smaller diffusion coefficients of ACh in the cleft. The sharpest and highest response of MEPC is achieved when the release area is about 4 times to the natural release through the narrow pore. On the other hand, the actual localization corresponding to the natural release of ACh makes the amplitude of MEPC higher by a factor about 2.5 compared with that in the most extended release of ACh examined, implying that the natural release mechanism works as an amplifier of the MEPC with the fixed amount of ACh available.  相似文献   

7.
Synaptic delay of single-quantum response with low mean quantal size (0.05–1) was measured during experiments on preparations of frog neuromuscular junctions using extracellular focal recording of presynaptic action potentials and endplate currents. It was found that distribution of these synaptic delays is of a polymodal nature and mean intermodal interval equaled 0.22±0.01 msec over 13 experiments. An increase in quantal size produced only a redistribution of mode weighting, while mean modal interval remained unchanged. A reduction in temperature induced an increase in the modal interval with the temperature coefficient Q10=2.42±0.14 (n=15). The explanation is suggested that the process of quantal transmitter release is determined by interaction between the calcium-dependent mechanism for raising the likelihood of release on the one hand and the rhythmic operation of the system producing transmitter release on the other. The latter stage in the process depends on temperature, not intracellular Ca2+ concentration. The polymodal distribution of synaptic delay reflects the rhythmic operation of the transmitter release zone.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 748–756, November–December, 1986.  相似文献   

8.
The time course of carbachol-induced desensitization onset and recovery of sensitivity after desenitization have been compared at the frog neuromuscular junction. The activation-desensitization sequence was determined from input conductance measurements using potassium-depolarized muscle preparations. Both desensitization onset and recovery from desensitization could be adequately described by single time constant expressions, with tauonset being considerably shorter than taurecovery. In nine experiments, tauonset was 13+/-1.3 s and taurecovery was 424+/-51 s with 1 mM carbachol. Elevating the external calcium or carbachol concentration accelerated desensitization onset without changing the recovery of sensitivity after equilibrium desensitization. Desensitization onset was accelerated by a prior activation-desensitization sequence to an extent determined by the recovery interval that followed the initial carbachol application. The time course of return of tauonset was closely parallel to, but slower than the time course of recovery of sensitivity. These results are consistent with a cyclic model in which intracellular calcium is a factor controlling the rate of development of desensitization.  相似文献   

9.
The possible effects of the alkaloids vinblastine and colchicine on the postsynaptic membrane of the frog neuromuscular junction were investigated using voltage-clamp techniques. Concentrations of vinblastine and colchicine which had been shown to exert no effect on the amplitude and duration of miniature endplate currents (MEPC) and the current-voltage relationship of low-quantal endplate currents (EPC) together with the coefficient of voltage-dependent EPC decay did produce a considerable rise in the amplitude of response to iontophoretically applied acetylcholine (ACh). In addition, vinblastine and colchicine accelerate MEPC and EPC during acetylcholine esterase inhibition while further depressing the amplitude of multi-quantal EPC succeeding at the rate of 10 Hz as well as response to regular (5–10 Hz) application of ACh from a micropipet. The dosage-frequency effects of vinblastine and colchicine on the postsynaptic membrane (as described) are presumed to be unconnected with the action of these agents on muscle fiber cytoskeleton but the results of accelerated desensitization of cholinoreceptors.S. V. Kurashov Medical Institute, Kazan. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 75–81, January–February, 1988.  相似文献   

10.
Etomidate is an intravenous anesthetic used during anesthesia induction. This agent induces spontaneous movements, especially myoclonus after its administration suggesting a putative primary effect at the central nervous system or the periphery. Therefore, the aim of this study was to investigate the presynaptic and postsynaptic effects of etomidate at the mouse neuromuscular junction (NMJ). Diaphragm nerve muscle preparations were isolated and stained with the styryl dye FM1-43, a fluorescent tool that tracks synaptic vesicles exo-endocytosis that are key steps for neurotransmission. We observed that etomidate induced synaptic vesicle exocytosis in a dose-dependent fashion, an effect that was independent of voltage-gated Na+ channels. By contrast, etomidate-evoked exocytosis was dependent on extracellular Ca2+ because its effect was abolished in Ca2+-free medium and also inhibited by omega-Agatoxin IVA (30 and 200 nM) suggesting the participation of P/Q-subtype Ca2+ channels. Interestingly, even though etomidate induced synaptic vesicle exocytosis, we did not observe any significant difference in the frequency and amplitude of miniature end-plate potentials (MEPPs) in the presence of the anesthetic. We therefore investigated whether etomidate could act on nicotinic acetylcholine receptors labeled with α-bungarotoxin-Alexa 594 and we observed less fluorescence in preparations exposed to the anesthetic. In conclusion, our results suggest that etomidate exerts a presynaptic effect at the NMJ inducing synaptic vesicle exocytosis, likely through the activation of P-subtype voltage gated Ca2+ channels without interfering with MEPPs frequency. The present data contribute to a better understanding about the effect of etomidate at the neuromuscular synapse and may help to explain some clinical effects of this agent.  相似文献   

11.
Transforming growth factor β (TGF-β)-stimulated epithelial-mesenchymal transition (EMT) is an important developmental process that has also been implicated in increased cell invasion and metastatic potential of cancer cells. Expression of the focal adhesion protein Hic-5 has been shown to be up-regulated in epithelial cells in response to TGF-β. Herein, we demonstrate that TGF-β-induced Hic-5 up-regulation or ectopic expression of Hic-5 in normal MCF10A cells promoted increased extracellular matrix degradation and invasion through the formation of invadopodia. Hic-5 was tyrosine phosphorylated in an Src-dependent manner after TGF-β stimulation, and inhibition of Src activity or overexpression of a Y38/60F nonphosphorylatable mutant of Hic-5 inhibited matrix degradation and invasion. RhoC, but not RhoA, was also required for TGF-β- and Hic-5-induced matrix degradation. Hic-5 also induced matrix degradation, cell migration, and invasion in the absence of TGF-β via Rac1 regulation of p38 MAPK. These data identify Hic-5 as a critical mediator of TGF-β-stimulated invadopodia formation, cell migration, and invasion.  相似文献   

12.
The ionophores A23187 and X537A have markedly different actions on the MEPP frequency recorded at the frog neuromuscular junction. A23187 has no significant effect at 9–17°C, but causes a small increase in MEPP frequency at 6°C. At 25°C, on the other hand, A23187 causes a marked and progressive rise in MEPP rate. It is suggested that, in spite of increased Ca2+ influx associated with application of the ionophore, the presynaptic terminals can maintain [Ca2+]i constant at 9–17°C, although [Ca2+]i rises at higher and lower temperatures, causing an increase in frequency of MEPPs. As previously reported by Kita and Van der Kloot (5) X537A causes a dramatic increase in MEPP frequency, but it is suggested that its action is more complex and probably involves an increase in Na+ permeability.  相似文献   

13.
The active zone is a unique specialization of the presynaptic membrane and is believed to be the site of transmitter release. The formation of the active zone and the relationship of this process to transmitter release were studied at reinnervated neuromuscular junctions in the frog. At different times after a nerve crush, the cutaneous pectoris muscles were examined with intracellular recording recording and freeze-fracture electron microscopy. The P face of a normal active zone typically consists of two double rows of particles lined up in a continuous segment located opposite a junctional fold. In the initial stage of reinnervation, clusters of large intramembrane particles surrounding membrane elevations appeared on the P face of nerve terminals. Like normal active zones, these clusters were aligned with junctional folds. Vesicle openings, which indicate transmitter release, were seen at these primitive active zones, even though intramembrane particles were not yet organized into the normal pattern of two double rows. The length of active zones at this stage was only approximately 15% of normal. During the secondary stage, every junction was reinnervated and most active zones had begun to organize into the normal pattern with normal orientation. Unlike normal, there were often two or more discontinuous short segments of active zone aligned with the same junctional fold. The total length of active zone per junctional fold increased to one-third of normal, mainly because of the greater number of segments. In the third stage, the number of active zone segments per junctional fold showed almost no change when compared with the secondary stage. However, individual segments elongated and increased the total length of all active zone segments per junctional fold to about two-thirds of the normal length. The dynamic process culminated in the final stage, during which elongating active zones appeared to join together and the number of active zone segments per junctional fold decreased to normal. Thus, in most regions, regeneration of the active zones was complete. These results suggest that the normal organization of two double rows is not necessary for the active zone to be functional. Furthermore, localization of regenerating active zones is related to junctional folds and/or their associated structures.  相似文献   

14.
The extracellular matrix surrounding the neuromuscular junction is a highly specialized and dynamic structure. Matrix Metalloproteinases are enzymes that sculpt the extracellular matrix. Since synaptic activity is critical to the structure and function of this synapse, we investigated whether changes in synaptic activity levels could alter the activity of Matrix Metalloproteinases at the neuromuscular junction. In particular, we focused on Matrix Metalloproteinase 3 (MMP3), since antibodies to MMP3 recognize molecules at the frog neuromuscular junction, and MMP3 cleaves a number of synaptic basal lamina molecules, including agrin. Here we show that the fluorogenic compound (M2300) can be used to perform in vivo proteolytic imaging of the frog neuromuscular junction to directly measure the activity state of MMP3. Application of this compound reveals that active MMP3 is concentrated at the normal frog neuromuscular junction, and is tightly associated with the terminal Schwann cell. Blocking presynaptic activity via denervation, or TTX nerve blockade, results in a decreased level of active MMP3 at the neuromuscular junction. The loss of active MMP3 at the neuromuscular junction in denervated muscles can result from decreased activation of pro-MMP3, or it could result from increased inhibition of MMP3. These results support the hypothesis that changes in synaptic activity can alter the level of active MMP3 at the neuromuscular junction.  相似文献   

15.
The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca(2+)-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP-/- mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction approximately 10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.  相似文献   

16.
Action of Co and Ni at the frog neuromuscular junction   总被引:2,自引:0,他引:2  
  相似文献   

17.
A Klarsfeld 《Biochimie》1987,69(5):433-437
  相似文献   

18.
The sequence of structural changes that occur during synaptic vesicle exocytosis was studied by quick-freezing muscles at different intervals after stimulating their nerves, in the presence of 4-aminopyridine to increase the number of transmitter quanta released by each stimulus. Vesicle openings began to appear at the active zones of the intramuscular nerves within 3-4 ms after a single stimulus. The concentration of these openings peaked at 5-6 ms, and then declined to zero 50-100 ms late. At the later times, vesicle openings tended to be larger. Left behind at the active zones, after the vesicle openings disappeared, were clusters of large intramembrane particles. The larger particles in these clusters were the same size as intramembrane particles in undischarged vesicles, and were slightly larger than the particles which form the rows delineating active zones. Because previous tracer work had shown that new vesicles do not pinch off from the plasma membrane at these early times, we concluded that the particle clusters originate from membranes of discharged vesicles which collapse into the plasmalemma after exocytosis. The rate of vesicle collapse appeared to be variable because different stages occurred simultaneously at most times after stimulation; this asynchrony was taken to indicate that the collapse of each exocytotic vesicle is slowed by previous nearby collapses. The ultimate fate of synaptic vesicle membrane after collapse appeared to be coalescence with the plasma membrane, as the clusters of particles gradually dispersed into surrounding areas during the first second after a stimulus. The membrane retrieval and recycling that reverse this exocytotic sequence have a slower onset, as has been described in previous reports.  相似文献   

19.
20.
Summary Bass and Moore [Proc. Nat. Acad. Sci. 55:1214 (1966)] proposed that the vesicles containing acetylcholine undergo Brownian motion in the nerve terminals. Acetylcholine is released whenever a vesicle touches the inner face of the axolemma of the nerve terminal. The frequency at which contact is made is limited by an energy barrier that must be overcome before the vesicle can touch the axolemma. The energy barrier has two components. (1) An electrostatic repulsion between positive, fixed charges on the vesicles and a relatively positive potential at the face of the axolemma that is generated by the resting potential. (2) A layer of water molecules held to the vesicle by the surface charge. This model is inconsistent with experimental data. A modification of the model is presented. Both the vesicle and the inner face of the axolemma are assumed to have fixed, negative surface charges that are responsible for the energy barrier. By a series of simplifications, the model leads to two predictions. (1) A plot of the ln (miniature end plate potentials/sec) as a function of the concentration of ions in the axoplasm)–0.5 should give a straight line. (2) A plot of ln (end plate potential amplitudes) as a function of (extracellular Ca++ concentration)–0.5 should give a straight line. These predictions are shown to agree reasonably well with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号