首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Sediment samples collected over a 3-year period from Brisbane River, Australia, were analysed for fifteen (15) polycyclic aromatic hydrocarbons (PAHs). The total PAH concentrations varied from 148 to 3079 ng/g with a mean concentration of 849 ± 646 ng/g. The study revealed that PAH input into the river was primarily dominated by pyrogenic sources as evidenced by the predominance of the high molecular weight (HMW) PAHs. Temporal variations of PAHs can be linked to the level of urbanization, with continuous input of combustion related PAHs in the commercial area of the river. Inherent deficiencies in using a single source identification/apportionment approach were overcome by using diagnostic ratios, principal component analysis/absolute principal component scores (PCA/APCS) and positive matrix factorization (PMF). Both, PCA/APCS and PMF resolved four (4) identical factors or sources of PAHs, namely: gasoline emissions, diesel emissions, biomass burning and natural gas combustion. Diagnostic ratios, PCA/APCS and PMF analysis indicated that vehicular emissions were the principal sources especially within the lower section of the river while biomass burning had moderate contribution. The distribution, temporal trend and source apportionment suggest the containment of industrial-derived sources of PAHs in the river. From an ecological point of view, the risk posed by PAHs in the Brisbane River sediment appears to be low. Nevertheless, when the investigated sites were ranked using multi-criteria decision making methods(MCDM) the commercial stratum was the most contaminated. Assessment of potential risks posed by incidental dermal exposure to PAHs revealed some degree of cancer risk, especially to children.  相似文献   

2.
Over the past 30 years, research on the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) has resulted in the isolation of numerous genera of bacteria, fungi and algae capable of degrading low molecular weight PAHs (compounds containing three or less fused benzene rings). High molecular weight PAHs (compounds containing four or more fused benzene rings) are generally recalcitrant to microbial attack, although some fungi and algae are capable of transforming these compounds. Until recently, only a few genera of bacteria have been isolated with the ability to utilise four-ring PAHs as sole carbon and energy sources while cometabolism of five-ring compounds has been reported. The focuss of this review is on the high molecular weight PAH benzo[a]pyrene (BaP). There is concern about the presence of BaP in the environment because of its carcinogenicity, teratogenicity and toxicity. BaP has been observed to accumulate in marine organisms and plants which could indirectly cause human exposure through food consumption. This review provides an outline of the occurrence of BaP in the environment and the ability of bacteria, fungi and algae to degrade the compound, including pathways for BaP degradation by these organisms. In addition, approaches for improving microbial degradation of BaP are discussed.  相似文献   

3.
In a 3-year study, we determined the mutagenicity and polycyclic aromatic hydrocarbons (PAHs) of airborne particulates collected during December 1987-September 1988 (216 samples), October 1988-January 1989 (81 samples), and October 1989-April 1990 (52 samples) from 9 locations in the Taipei area. We found that dichloromethane extracts of all the samples were mutagenic to Salmonella typhimurium in the Ames test. Moreover, the mutagenicity was much higher in the presence of rat liver microsomal fraction (S9 mixture) than that observed in its absence, which indicates that airborne particulates contained both direct and indirect mutagens. The average mutagenicity of the samples collected in the 3-year period was 137, 127, and 118 histidine revertants/10 m3 air, respectively. On the other hand, we found that dichloromethane extracts of each airborne particulate sample contained 14 PAHs with wide variations in concentration and relative distribution. The levels of Pha, Flu, Pyr, and Ben were much higher than the PAHs with higher ring numbers such as BaP, BeP, Pr, IP, and DbA. The average PAH content was 8.0, 5.0, and 7.8 ng/m3 air for airborne particulates collected during December 1986-September 1987, October 1988-January 1989, and October 1989-April 1990, respectively. Among the 9 stations, Fu Hsing Elementary School and Chung Hsing University (Taipei campus), which are, respectively, located in the downtown area and a heavy traffic zone, had significantly higher levels of mutagenicity and PAHs than did the other stations. Moreover, comparative analysis of PAH levels of airborne particulates over the 3-year period revealed an interesting season-dependent change of PAH content in airborne particulates from the Taipei area. The concentrations of individual and total PAHs were consistently lower in the summer than those in the winter. A similar pattern of seasonal change was also observed in the mutagenicity of airborne particulate samples examined. It is worth mentioning that neither PAH level nor mutagenicity of airborne particulates showed significant yearly change over the 3-year period of study. As part of an effort to identify pollution sources, we examined the mutagenicity and PAH compounds of air particulates collected from the burning of garbage (14 samples) and motor-vehicle exhaust in the Hsin Hai Tunnel (17 samples), Taipei. The results showed that garbage burning gave rise to air particulates containing several hundred times higher levels of PAHs and about 20 times stronger mutagenicity, while the motor-vehicle exhaust contained about ten times higher PAH content and mutagenicity as compared with those of airborne particulates of the Taipei city.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
A biomonitoring study was conducted to simultaneously measure individual benzo(a)pyrene (BaP) exposure in 50 office employees, not occupationally exposed to polycyclic aromatic hydrocarbons (PAH), using personal samplers and the formation of (+) r-7, t-8-dihyroxy-t-9,t-10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE) adducts to haemoglobin (BPDE–Hb) and serum albumin (BPDE–SA). The population enrolled was exposed to an average of 0.58 ± 0.46 ng BaP m?3 (mean ± SD). The concentration of BaP collected from smokers' samples was double that from non-smokers (P = 0.007). BPDE adducts to Hb and SA were quantified as BaP tetrols released from hydrolysis of macromolecules and measured by high-resolution gas chromatography–negative ion chemical ionization–mass spectrometry. BPDE–Hb adducts were detected in 16% of the population and BPDE–SA adducts in 28%. Smoking did not affect adduct formation. When BaP personal monitoring data were used as the criterion of exposure, no correlation was found with the presence and the levels of BPDE–Hb and BPDE–SA adducts. Undetected sources of PAH, such as the diet, might markedly alter the exposure profile depicted by individual air sampling and affect the frequency and levels of protein biomarkers. This is the first comparative analysis of BPDE–Hb and BPDE–SA adducts, providing reference values for these biomarkers in a general urban population. However it is difficult to establish which biomarkers would be the more relevant in assessing low BaP exposure, due to undetectable factors such as dietary PAHs, that might have influenced the results to some degree.  相似文献   

5.
Representative polycyclic aromatic hydrocarbons (PAHs) of low-medium molecular weight were determined using headspace solid-phase microextraction and gas chromatography with a flame ionization detector (HS-SPME-GC-FID) in ten surface soil samples from Gipuzkoa (Northern Spain). The sum of the PAHs ranged from 0.21 to 136.26 mg kg?1. Pyrene and chrysene were the most abundant detected PAHs with an average concentration around 3.1 mg kg?1. Pearson's correlation and PAH isomer ratios were applied to study the different origins of contamination. The results indicated that the PAH contamination in the studied area was a mixed pattern of pyrolytic and petrogenic inputs. Multivariate exploratory techniques, principal component analysis (PCA), and cluster analysis (CA) were also applied corroborating the PAH compounds patterns in the soils.  相似文献   

6.
This study was done to determine the concentration of PAHs in urban soil of Delhi (India). Surface top soil (up to 10 cm depth) samples were collected from four different sampling sites including industrial, roadside, residential, and agricultural areas of Delhi and 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were evaluated. Total PAH concentrations at industrial, roadside, residential, and agricultural sites were 11.46 ± 8.39, 6.96 ± 4.82, 2.12 ± 1.12, and 1.55 ± 1.07 mg/kg (dry weight), respectively, with 3–7 times greater concentrations in industrial and roadside soils than that in residential and agricultural soils. The PAH pattern was dominated by 4- and 5-ring PAHs (contributing >50% to the total PAHs) at industrial and roadside sites with greater concentration of fluoranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]anthracene, benzo[ghi]perylene, and pyrene, whereas, residential and agricultural sites showed a predominance of low molecular weight 2- and 3-ring PAHs (fluoranthene, acenaphthene, naphthalene, chrysene, and anthracene). Isomeric pair ratios suggested biomass combustion and fossil fuel emissions as the main sources of PAHs. The toxic equivalency factors (TEFs) showed that carcinogenic potency (benzo[a]pyrene-equivalent concentration (B[a]Peq) of PAH load in industrial and roadside soils was ~10 and ~6 times greater than the agricultural soil.  相似文献   

7.
The concentrations of PAHs in four species of fish (Common carp, Crucian carp, Bighead carp, and Topmouth culter) from Lake Taihu were tested, and the human health risks of PAHs by fish consumption were evaluated. Results showed that concentrations of PAHs in fish from Lake Taihu were 52.5–247.6 ng/g wet weight (ww), and the BaP equivalent concentrations of total PAHs (B[a]Peq) were 0.2–0.6 ng/g ww, which were less than the screening value of 2.6 ng/g wet for human consumption. The concentration sequences of PAHs in fish from Lake Taihu from high to low were Bighead carp > Crucian carp > Common carp > Topmouth culter. The human health risk level of PAHs by fish consumption was 5.8 ± 2.5 × 10?6, which was less than the maximum acceptable risk level of 1 × 10?5 for human health set by the U.S. Environmental Protection Agency. The tissue residue guideline (TRG) of PAHs for protecting aquatic wildlife was 1.3 mg/kg diet ww, which was higher than the concentrations of PAHs in fish from Lake Taihu. The results indicated that fish consumption from Lake Taihu would not cause health risk or harmful effects on wildlife that consume aquatic biota.  相似文献   

8.
9.
Biological treatment methods are effective at destroying polycyclic aromatic hydrocarbons (PAHs), and some of the highest rates of PAH degradation have been achieved using two-phase-partitioning bioreactors (TPPBs). TPPBs consist of a cell-containing aqueous phase and a biocompatible and immiscible organic phase that partitions toxic and/or recalcitrant substrates to the cells based on their metabolic demand and on maintaining the thermodynamic equilibrium of the system. In this study, the degradation of a 5-component mixture of high and low molecular weight PAHs by a defined microbial consortium of Sphingomonas aromaticivorans B0695 and Sphingomonas paucimobilis EPA505 in a TPPB was examined. The extremely low aqueous solubilities of the high molecular weight (HMW) PAHs significantly reduce their bioavailability to cells, not only in the environment, but in TPPBs as well. That is, in the two-phase system, the originally selected solvent, dodecane, was found to sequester the HMW PAHs from the cells in the aqueous phase due to the inherent high solubility of the hydrophobic compounds in this solvent. To circumvent this limitation, the initial PAH concentrations in dodecane were increased to sufficient levels in the aqueous phase to support degradation: LMW PAHs (naphthalene, phenanthrene) and fluoranthene were degraded completely in 8 h, while the HMW PAHs, pyrene and benzo[a]pyrene, were degraded by 64% and 11%, at rates of 42.9 mg l−1 d−1 and 7.5 mg l−1 d−1, respectively. Silicone oil has superior PAH partitioning abilities compared to dodecane for the HMW PAHs, and was used to improve the extent of degradation for the PAH mixture. Although silicone oil increased the bioavailability of the HMW PAHs and greater extents of biodegradation were observed, the rates of degradation were lower than that obtained in the TPPB employing dodecane.  相似文献   

10.
Abstract

Six stations were established in Xiamen Western Sea (24°29’ N, 118°04’ E) on summer and autumn cruises in July and October 2001 to investigate the level of polyaromatic hydrocarbons (PAHs) and PAHs-degrading bacteria in surface water and sediments. PAHs in the surface water were mainly dominated by low molecular weight PAH compounds (2–3 rings PAH) in July and by high molecular weight PAH compounds (4–6 rings PAH) in October. PAHs in sediments were mainly dominated by high molecular weight PAH compounds (4–6). The percentage of 4–6 rings PAH to total PAHs ranged from 80.4 to 94.9% in July and 78.3 to 88.7% in October. No correlation was found between Fluoranthene-degrading bacteria numbers and Fluoranthene concentration among different stations in the surface water on the two cruises, and the same situation occurred between Pyrene-degrading bacteria numbers and pyrene concentration. But the numbers of fluorene- and phenanthrenedegrading bacteria were positively related to the fluorene and phenanthrene concentrations respectively. In the sediments, a significant positive relationship was found between PAH-degrading bacteria and PAHs concentration, except at station 6 on the two cruises.  相似文献   

11.
The data on benzo(a)pyrene (BaP) and other polynuclear aromatic hydrocarbons (PAH) pollution of Lake Peipsi and its tributaries in the 1970s–1980s have been summarized. Systematic data on the pollution of Lake Peipsi by BaP are available. The BaP content in lake water varied from <0.1 to 237 ng 1–1. The content and qualitative composition of PAH varied in different observations. PAH were accumulated mainly in the bottom sediments; in their surface layer BaP concentrations were 103–106 times higher than in water. The concentration of the PAH in bottom sediments varied from 16 to 580 µg kg–1 in the lake and from 40 to 2800 µg kg–1 in its tributaries. The content of BaP in fish and biota was not high. Among the pollution sources the atmospheric pollution played quite a significant role. The lake was also polluted by oil spillage and fuel exhausts from boats and ships. The PAH concentration in the water of the tributaries was somewhat higher than in the area of Lake Peipsi.  相似文献   

12.
Human beings are exposed to polycyclic aromatic hydrocarbons (PAHs) from various occupational, environmental, and dietary sources. The study was carried out in the Cape Coast Metropolis of Ghana to assess the levels of PAHs in treated and untreated cattle hide and the associated health risks thereof. Treated cattle hide (wele) is one of the most well-patronized meat products in Ghana. A total of 90, treated (n = 36), untreated (n = 36), and control (n = 18) cattle hide samples were treated and analyzed using a gas chromatography flame ionization detection (GC/FID) technique. The total PAH concentration in the treated cattle hide ranged from 5.9 μg/kg naphthalene to 719.9 μg/kg benzo[b]fluoranthene. The total PAHs in untreated hide ranged from 57.6 μg/kg naphthalene to 19840.9 μg/kg benzo[b]fluoranthene. The amount of PAHs in the control hide, however, ranged from non-detectable for many of the PAHs to 0.5 μg/kg for fluorene. The carcinogenic risk value associated with the consumption of treated hide in children ranged between 1.0 × 10?3 and 9.4 × 10?3 whereas that of adults ranged between 1.9 × 10?4 and 2.1 × 10?5. This implies that the continuous consumption of heavily burnt cattle hide may not exempt the consumers from all the possible health cases associated with PAHs.  相似文献   

13.
Many carcinogenic polycyclic aromatic hydrocarbons (PAHs) and their metabolites can bind covalently to DNA. Carcinogen-DNA adducts may lead to mutations in critical genes, eventually leading to cancer. In this study we report that fish oil (FO) blocks the formation of DNA adducts by detoxification of PAHs. B6C3F1 male mice were fed a FO or corn oil (CO) diet for 30 days. The animals were then treated with seven carcinogenic PAHs including benzo(a)pyrene (BaP) with one of two doses via a single intraperitoneal injection. Animals were terminated at 1, 3, or 7 d after treatment. The levels of DNA adducts were analyzed by the 32P-postlabeling assay. Our results showed that the levels of total hepatic DNA adducts were significantly decreased in FO groups compared to CO groups with an exception of low PAH dose at 3 d (P = 0.067). Total adduct levels in the high dose PAH groups were 41.36±6.48 (Mean±SEM) and 78.72±8.03 in 109 nucleotides (P = 0.011), respectively, for the FO and CO groups at 7 d. Animals treated with the low dose (2.5 fold lower) PAHs displayed similar trends. Total adduct levels were 12.21±2.33 in the FO group and 24.07±1.99 in the CO group, P = 0.008. BPDE-dG adduct values at 7 d after treatment of high dose PAHs were 32.34±1.94 (CO group) and 21.82±3.37 (FO group) in 109 nucleotides with P value being 0.035. Low dose groups showed similar trends for BPDE-dG adduct in the two diet groups. FO significantly enhanced gene expression of Cyp1a1 in both the high and low dose PAH groups. Gstt1 at low dose of PAHs showed high levels in FO compared to CO groups with P values being 0.014. Histological observations indicated that FO played a hepatoprotective role during the early stages. Our results suggest that FO has a potential to be developed as a cancer chemopreventive agent.  相似文献   

14.
Abstract

An explanatory study was carried out to divulge the sources, contamination level of different classes of Polycyclic Aromatic Hydrocarbons (PAHs) distribution and the impact of vehicular traffic on the roadside soil by assessing incremental lifetime cancer risk at each site to understand the potential health risk of nearby residents along the National Highway-2 Delhi–Kolkata India. Comparison of the cancer risk assessment was performed using Monte Carlo simulation for the entire study area. The results revealed 90% cancer risk value of 6.40?×?10?5 and 6.5?×?10?5 for children and adults, respectively, whereas, without simulation the Total Cancer Risk (TCR) for adults was 6.925?×?10?5 and 6.220?×?10?5 for children, observed maximum at the location (S5). The dilemma of risk assessment indicating profoundly contaminated soil. Comparison of PAHs concentration with the background values of PAHs ranged from 1.478 to 27.493?mg kg?1. The (IP/BgP) ratio specified that the PAHs content of the highway roadside sample is preponderate by diesel vehicle emission, biomass combustion and coal combustion. The study clearly revealed and advocated the influence of organic and inorganic pollution, which aggravates and causes health issues to the nearby inhabitants. This study could also be advantageous to similar consequences seen elsewhere in the world.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) in the surface urban soils of Shenyang in Northeastern China were investigated. The total concentration of the PAHs ranged from 0.09 to 8.35 mg kg?1, with an average value of 1.51 ± 1.64 mg kg?1. 3–5-ring PAHs accounted for 90% of total PAHs. The functional areas, such as the industrial regions (4.95 mg kg?1) and main roads (1.56 mg kg?1), as well as the administrative divisions, including the districts of Shenhe (1.49 mg kg?1), Heping (2.08 mg kg?1), and Tiexi (2.14 mg kg?1), were heavily polluted by PAHs. The diagnostic ratios and principal component analysis (PCA) for PAHs indicate that the pollutants probably originated primarily from coal combustion and petroleum sources. The Nemerow composite index, used to assess environmental quality, shows that the soil samples were heavily polluted with PAHs, and although 52.8% of the soil sampling sites were safe, 47.2% of the soil sampling sites registered different grades of PAH pollution. The PAH contamination in Shenyang emphasizes the need for controlling fossil fuel combustion and traffic exhaust.  相似文献   

16.
The effects of interactions between genetic materials and polycyclic aromatic hydrocarbons (PAHs) on gene expression in the extracellular environment remain to be elucidated and little information is currently available on the effect of ionic strength on the transformation of plasmid DNA exposed to PAHs. Phenanthrene and pyrene were used as representative PAHs to evaluate the transformation of plasmid DNA after PAH exposure and to determine the role of Ca2+ during the transformation. Plasmid DNA exposed to the test PAHs demonstrated low transformation efficiency. In the absence of PAHs, the transformation efficiency was 4.7 log units; however, the efficiency decreased to 3.72–3.14 log units with phenanthrene/pyrene exposures of 50 µg·L–1. The addition of Ca2+ enhanced the low transformation efficiency of DNA exposed to PAHs. Based on the co-sorption of Ca2+ and phenanthrene/pyrene by DNA, we employed Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and mass spectrometry (MS) to determine the mechanisms involved in PAH-induced DNA transformation. The observed low transformation efficiency of DNA exposed to either phenanthrene or pyrene can be attributed to a broken hydrogen bond in the double helix caused by planar PAHs. Added Ca2+ formed strong electrovalent bonds with “–POO–” groups in the DNA, weakening the interaction between PAHs and DNA based on weak molecular forces. This decreased the damage of PAHs to hydrogen bonds in double-stranded DNA by isolating DNA molecules from PAHs and consequently enhanced the transformation efficiency of DNA exposed to PAH contaminants. The findings provide insight into the effects of anthropogenic trace PAHs on DNA transfer in natural environments.  相似文献   

17.
Sixteen USEPA priority polycyclic aromatic hydrocarbons (PAHs) were analyzed by gas chromatography–mass spectrometry. Twenty samples were collected from the surface sediments of Haizhou Bay in this survey. This research aimed to identify the PAHs' contamination level, composition pattern, pollution sources, and assess the ecological risk of PAHs. The results showed that the sum of PAH concentrations ranged from 116.6 ng g?1 to 2414.9 ng g?1 (mean: 662.42 ng g?1), which is higher than the reported values for different wetlands worldwide. Three- and four-ring PAHs (accounts for more than 70% of the total PAH content) were predominant in the wetland sediment. The PAHs source distribution in the surface sediments were determined using diagnostic ratio and PCA/MLR. Consequently, multiple PAHs sources were found. Of the total PAH, 79.25% was derived from vehicular emission, 20.75% from coal combustion. The effect range low/effect range median (ERL/ERM) values indicated a low toxicity risk level. However, the fluoranthene concentrations exceeded the ERL level, and even the ERM level, in some stations. The mean effects range–median quotient (M-ERM-Q) suggests a low ecological risk for the PAHs in the sediments.  相似文献   

18.
A detailed analytical study using combined normal phase high pressure liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) of Polynuclear Aromatic Hydrocarbons (PAHs) in fish from the Red Sea was undertaken. This investigation involves a preliminary assessment of the sixteen parent compounds issued by the U.S. Environmental Protection Agency(EPA). The study revealed measurable levels of Σ PAHs (the sum of three to five or six ring parent compounds) (49.2 ng g−1 dry weight) and total PAHs (all PAH detected) (422.1 ng g−1 dry weight) in edible muscle of fishes collected from the Red Sea. These concentrations are within the range of values reported for other comparable regions of the world. Mean concentrations for individual parent PAH in fish muscles were; naphthalene 19.5, biphenyl 4.6, acenaphthylene 1.0, acenaphthene 1.2, fluorene 5.5, phenanthrene 14.0, anthracene 0.8, fluoranthene 1.5, pyrene 1.8, benz(a)anthracene 0.4, chrysene 1.9, benzo(b)fluoranthene 0.5, benzo(k)fluoranthene 0.5, benzo(e)pyrene 0.9, benzo(a)pyrene 0.5, perylene 0.2, and indeno(1,2,3-cd)pyrene 0.1 ng g−1 dry weight respectively. The Red Sea fish extracts exhibit the low molecular weight aromatics as well as the discernible alkyl-substituted species of naphthalene, fluorene, phenanthrene and dibenzothiophene. Thus, it was suggested that the most probable source of PAHs is oil contamination originating from spillages and/or heavy ship traffic. It was concluded that the presence of PAHs in the fish muscles is not responsible for the reported fish kill phenomenon. However, the high concentrations of carcinogenic chrysene encountered in these fishes should be considered seriously as it is hazardous to human health. Based on fish consumption by Yemeni‘s population it was calculated that the daily intake of total carcinogens were 0.15 μg/person/day. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Abstract

This study investigated the distribution, sources, and potential risks of polycyclic aromatic hydrocarbons (PAHs) in coastal waters along over 18,000?km of coastline in China. Concentrations of PAHs in coastal waters ranged from 141.99 to 717.72?ng/L. Approximately 84.38% of sampling sites were determined at moderate PAH pollution level. PAHs in coastal waters at most of sampling sites mainly originated from combustion based on characteristic ratios of PAHs. Ecological risks posed by PAHs in coastal waters were evaluated as high level at 59.38% of sampling sites and moderate level at 40.63% of sampling sites although toxic equivalent quotients of PAHs only ranged from 2.86 to 126.52?ng/L benzo[a]pyrene that was not detected at all sampling sites. Maximal cancer risk/hazard quotient of total PAHs in coastal waters for adults and children reached 6.34?×?10?4/5.85?×?10?2 and 2.25?×?10?3/7.72?×?10?2, respectively. PAHs exerted high cancer risks for children at 31.25% of sampling sites. Health risks posed by PAHs in coastal waters of this study were higher than those of Japan, Belgium, Greece, Italy, Spain, USA, and Australia, but much lower than those of Singapore, Iran, Brazil, and Egypt. These findings indicate that PAH pollution has become a crucial stress affecting the sustainable development of coastal regions.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs), which are hard to degrade, are the main pollutants in the environment. Degradation of PAHs in the environment is becoming more necessary and urgent. In the current study, strain PL1 with degradation capability of pyrene (PYR) and benzo[a]pyrene (BaP) was isolated from soil and identified as Klebsiella pneumoniae by morphological and physiological characteristics as well as 16S rDNA sequence. With the presence of 20 mg L?1 PYR and 10 mg L?1 BaP in solution, the strain PL1 could degrade 63.4 % of PYR and 55.8 % of BaP in 10 days, respectively. The order of biodegradation of strain PL1 was pH 7.0?>?pH 8.0?>?pH 10.0?>?pH 6.0?>?pH 5.0. Strain PL1 degradation ability varied in different soil. The half-life of PYR in soil was respectively 16.9, 24.9, and 88.9 days in paddy soil, red soil, and fluvo-aquic soil by PL1 degradation; however, the half-lives of BaP were respectively 9.5, 9.5, and 34.0 days in paddy soil, red soil, and fluvo-aquic soil by PL1 degradation. The results demonstrate that the degradation capability on PYR and BaP by PL1 in paddy soil was relatively good, and K. pneumoniae PL1 was the new degradation bacterium of PYR and BaP. K. pneumoniae PL1 has potential application in PAH bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号