首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human metabolism of di(2-ethylhexyl) phthalate (DEHP) is complex and yields mono(2-ethylhexyl) phthalate (MEHP) and numerous oxidative metabolites. The oxidative metabolites, mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) and mono(2-carboxymethylhexyl) phthalate (MCMHP), have been considered to be better biomarkers for DEHP exposure assessment than MEHP because urinary levels of these metabolites are generally higher than MEHP, and their measurements are not subject to contamination. The urinary levels of the above metabolites, and of three other recently identified DEHP oxidative metabolites, mono(2-ethyl-3-carboxypropyl) phthalate (MECPrP), mono-2-(1-oxoethylhexyl) phthalate (MOEHP), and mono(2-ethyl-4-carboxybutyl) phthalate (MECBP), were measured in 129 adults. MECPP, MCMHP and MEHHP were present in all the samples analysed. MEHP and the other oxidative metabolites were detected less frequently: MEOHP (99%), MECBP (88%), MECPrP (84%), MEHP (83%) and MOEHP (77%). The levels of all DEHP metabolites were highly correlated (p<0.0001) with each other, confirming a common parent. The ? and ?-1 oxidative metabolites (MECPP, MCMHP, MEHHP and MEOHP) comprised 87.1% of all metabolites measured, and thus are most likely the best biomarkers for DEHP exposure assessment. The percentage of the unglucuronidated free form excreted in urine was higher for the ester linkage carboxylated DEHP metabolites compared with alcoholic and ketonic DEHP metabolites. The percentage of the unglucuronidated free form excreted in urine was higher for the DEHP metabolites with a carboxylated ester side-chain compared with alcoholic and ketonic metabolites. Further, differences were found between the DEHP metabolite profile between this adult population and that of six neonates exposed to high doses of DEHP through extensive medical treatment. In the neonates, MEHP represented 0.6% and MECPP 65.5% of the eight DEHP metabolites measured compared to 6.6% (MEHP) and 31.8% (MECPP) in the adults. Whether the observed differences reflect differences in route/duration of the exposure, age and/or health status of the individuals is presently unknown.  相似文献   

2.
Few studies have examined the association between environmental phthalate exposure and children’s neurocognitive development. This longitudinal study examined cognitive function in relation to pre-and postnatal phthalate exposure in children 2–12 years old. We recruited 430 pregnant women in their third trimester in Taichung, Taiwan from 2001–2002. A total of 110, 79, 76, and 73 children were followed up at ages 2, 5, 8, and 11, respectively. We evaluated the children’s cognitive function at four different time points using the Bayley and Wechsler tests for assessing neurocognitive functions and intelligence (IQ). Urine samples were collected from mothers during pregnancy and from children at each follow-up visit. They were analyzed for seven metabolite concentrations of widely used phthalate esters. These esters included monomethyl phthalate, monoethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, and three metabolites of di(2-ethylhexyl) phthalate, namely, mono-2-ethylhexyl phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate, and mono(2-ethyl-5-oxohexyl) phthalate. We constructed a linear mixed model to examine the relationships between the phthalate metabolite concentrations and the Bayley and IQ scores. We found significant inverse associations between the children’s levels of urinary mono(2-ethyl-5-oxohexyl) phthalate and the sum of the three metabolites of di(2-ethylhexyl) phthalate and their IQ scores (β = -1.818; 95% CI: -3.061, -0.574, p = 0.004 for mono(2-ethyl-5-oxohexyl) phthalate; β = -1.575; 95% CI: -3.037, -0.113, p = 0.035 for the sum of the three metabolites) after controlling for maternal phthalate levels and potential confounders. We did not observe significant associations between maternal phthalate exposure and the children’s IQ scores. Children’s but not prenatal phthalate exposure was associated with decreased cognitive development in the young children. Large-scale prospective cohort studies are needed to confirm these findings in the future.  相似文献   

3.
Concentrations of mono(2-ethylhexyl)phthalate (MEHP), and di(2-ethylhexyl)phthalate (DEHP), in serum of healthy volunteers were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (LC/MS/MS). The serum was extracted with acetone, followed by hexane extraction under acidic conditions, and then applied to the LC/MS/MS. Recoveries of 20 ng/ml of MEHP and DEHP were 101+/-5.7 (n=6) and 102+/-6.5% (n=6), respectively. The limits of quantification (LOQ) of MEHP and DEHP in the method were 5.0 and 14.0 ng/ml, respectively. The concentration of MEHP in the serum was at or less than the LOQ. The concentration of DEHP in the serum was less than the LOQ. Contaminations of MEHP and DEHP from experimental reagents, apparatus and air during the procedure were less than the LOQ and were estimated to be <1.0 and 2.2+/-0.6 ng/ml, respectively. After subtraction of the contamination, the net concentrations of MEHP and DEHP in the serum were estimated at or <5 and <2 ng/ml, respectively. To decrease contamination by DEHP, the cleanup steps and the apparatus and solvent usage were minimized in the sample preparation procedures. The high selectivity of LC/MS/MS is the key for obtaining reliable experimental data from in the matrix-rich analytical samples and for maintaining a low level contamination of MEHP and DEHP in this experimental system. This method would be a useful tool for the detection of MEHP and DEHP in serum.  相似文献   

4.
Previous studies have shown that phthalate exposure in childhood is associated with the development of respiratory problems. However, few studies have assessed the relative impact of prenatal and postnatal exposure to phthalates on the development of asthma later in childhood. Therefore, we assessed the impact of prenatal and postnatal phthalate exposure on the development of asthma and wheezing using a Taiwanese birth cohort. A total of 430 pregnant women were recruited, and 171 (39.8%) of them had their children followed when they were aged 2, 5, and 8 years. The International Study of Asthma and Allergies in Childhood questionnaire was used to assess asthma and wheezing symptoms and serum total immunoglobulin E levels were measured at 8 years of age. Urine samples were obtained from 136 women during their third trimester of pregnancy, 99 children at 2 years of age, and 110 children at 5 years. Four common phthalate monoester metabolites in maternal and children’s urine were measured using liquid chromatography-electrospray ionization-tandem mass spectrometry. Maternal urinary mono-benzyl phthalate [MBzP] concentrations were associated with an increased occurrence of wheezing in boys at 8 years of age (odds ratio [OR] = 4.95 (95% CI 1.08–22.63)), for upper quintile compared to the others) after controlling for parental allergies and family members'' smoking status. Urinary mono-2-ethylhexyl phthalate [MEHP] levels over the quintile at 2-year-old were associated with increased asthma occurrence (adjusted OR = 6.14 (1.17–32.13)) in boys. Similarly, the sum of di-2-ethyl-hexyl phthalate [DEHP] metabolites at 5 years was associated with asthma in boys (adjusted OR = 4.36 (1.01–18.86)). Urinary MEHP in maternal and 5-year-old children urine were significantly associated with increased IgE in allergic children at 8 years. Prenatal and postnatal exposure to phthalate was associated with the occurrence of asthma in children, particularly for boys.  相似文献   

5.
Prenatal di(2-ethylhexyl) phthalate (DEHP) exposure can produce reproductive toxicity in animal models. Only limited data exist from human studies on maternal DEHP exposure and its effects on infants. We aimed to examine the associations between DEHP exposure in utero and reproductive hormone levels in cord blood. Between 2002 and 2005, 514 pregnant women agreed to participate in the Hokkaido Study Sapporo Cohort. Maternal blood samples were taken from 23–35 weeks of gestation and the concentration of the primary metabolite of DEHP, mono(2-ethylhexyl) phthalate (MEHP), was measured. Concentrations of infant reproductive hormones including estradiol (E2), total testosterone (T), and progesterone (P4), inhibin B, insulin-like factor 3 (INSL3), steroid hormone binding globulin, follicle-stimulating hormone, and luteinizing hormone were measured from cord blood. Two hundred and two samples with both MEHP and hormones'' data were included in statistical analysis. The participants completed a self-administered questionnaire regarding information on maternal characteristics. Gestational age, birth weight and infant sex were obtained from birth records. In an adjusted linear regression analysis fit to all study participants, maternal MEHP levels were found to be associated with reduced levels of T/E2, P4, and inhibin B. For the stratified analyses for sex, inverse associations between maternal MEHP levels T/E2, P4, inhibin B, and INSL3 were statistically significant for males only. In addition, the MEHP quartile model showed a significant p-value trend for P4, inhibin B, and INSL3 decrease in males. Since inhibin B and INSL3 are major secretory products of Sertoli and Leydig cell, respectively, the results of this study suggest that DEHP exposure in utero may have adverse effects on both Sertoli and Leydig cell development in males, which agrees with the results obtained from animal studies. Comprehensive studies investigating phthalates'' exposure in humans, as well as their long-term effects on reproductive development are needed.  相似文献   

6.
We present a fast and reliable on-line clean-up HPLC-method for the simultaneous determination of the five major urinary metabolites of di-(2-ethylhexyl)phthalate (DEHP) namely mono-(2-ethyl-5-carboxypentyl)phthalate (5carboxy-MEPP), mono-[2-(carboxymethyl)hexyl]phthalate (2carboxy-MMHP), mono-(2-ethyl-5-hydroxyhexyl)phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl)phthalate (5oxo-MEHP) and mono-(2-ethylhexyl)phthalate (MEHP). These metabolites represent about 70% of an oral DEHP dose. We for the first time succeeded to reliably quantify 5carboxy-MEPP and to identify 2carboxy-MMHP as major metabolites in native urines of the general population. The analytical procedure consists of an enzymatic hydrolysis, on-line extraction of the analytes from urinary matrix by a restricted access material column (RAM), back-flush transfer onto the analytical column (betasil phenylhexyl), detection by ESI-tandem mass spectrometry and quantification by isotope dilution (limit of detection (LOD) 0.25 microg/l). Median concentrations of a small collective taken from the general population (n=19) were 85.5 microg/l (5carboxy-MEPP), 47.5 microg/l (5OH-MEHP), 39.7 microg/l (5oxo-MEHP), 9.8 microg/l (MEHP) and about 37 microg/l (2carboxy-MMHP). The presented method can provide insights into the actual internal burden of the general population and certain risk groups. It will help to further explore the human metabolism of DEHP-an occupational and environmental toxicant of great concern.  相似文献   

7.

Background

Di-(2-ethylhexyl)phthalate (DEHP) is a common endocrine disrupting compound (EDC) present in the environment as a result of industrial activity and leaching from polyvinyl products. DEHP is used as a plasticizer in medical devices and many commercial and household items. Exposure occurs through inhalation, ingestion, and skin contact. DEHP is metabolized to a primary metabolite mono-(2-ethylhexyl)phthalate (MEHP) in the body, which is further metabolized to four major secondary metabolites, mono(2-ethyl-5-hydroxyhexyl)phthalate (5-OH-MEHP), mono(2-ethyl-5-oxyhexyl)phthalate (5-oxo-MEHP), mono(2-ethyl-5-carboxypentyl)phthalate (5-cx-MEPP) and mono[2-(carboxymethyl)hexyl]phthalate (2-cx-MMHP). DEHP and its metabolites are associated with developmental abnormalities and reproductive dysfunction within the human population. Progesterone receptor (PR) signaling is involved in important reproductive functions and is a potential target for endocrine disrupting activities of DEHP and its metabolites. This study used in silico approaches for structural binding analyses of DEHP and its five indicated major metabolites with PR.

Methods

Protein Data bank was searched to retrieve the crystal structure of human PR (Id: 1SQN). PubChem database was used to obtain the structures of DEHP and its five metabolites. Docking was performed using Glide (Schrodinger) Induced Fit Docking module.

Results

DEHP and its metabolites interacted with 19-25 residues of PR with the majority of the interacting residues overlapping (82-95 % commonality) with the native bound ligand norethindrone (NET). DEHP and each of its five metabolites formed a hydrogen bonding interaction with residue Gln-725 of PR. The binding affinity was highest for NET followed by DEHP, 5-OH-MEHP, 5-oxo-MEHP, MEHP, 5-cx-MEPP, and 2-cx-MMHP.

Conclusion

The high binding affinity of DEHP and its five major metabolites with PR as well as a high rate of overlap between PR interacting residues among DEHP and its metabolites and the native ligand, NET, suggested their disrupting potential in normal PR signaling, resulting in adverse reproductive effects.
  相似文献   

8.

Objective

To examine the age and sex-specific associations of urine levels of six mono-phthalates with body size and fat distribution in Chinese children at puberty.

Materials and Methods

Four hundred and ninety-three school-aged children (247 boys, 246 girls) were recruited. Obesity related anthropometric indices were measured and body fat proportion (BF%) was calculated. Spot urine samples were collected and phthalate monoesters were detected by an API 2000 electrospray triple quadrupole mass spectrometer (ESI-MS/MS). Associations between phthalate exposure and overweight/obesity measures and their trends were examined by multiple linear regression and Logistic regression analyses, respectively.

Results

Di-2-ethylhexyl phthalate (DEHP) metabolites and monobutyl phthalate (MBP) were found to be the most detectable chemicals. In 8–10 years (yrs) group, concentrations of MEHP and MBP were significantly higher in girls than those in boys. However, concentrations of all phthalate monoesters, except for MEP and MEHP, in 11–13 yrs boys were significantly higher than those in girls. After adjusting for confounders including puberty onset, urinary concentrations of MBP and sum of low molecular-weight phthalate metabolites (∑LMP) were positively associated with boys'' obesity in a concentration-effect manner, while concentrations of MEHP, MEHHP and sum of DEHP metabolites (∑MEHP) were negatively associated with girls'' obesity. Associations between phthalate exposure levels and BMI z-score changes were age- and sex-specific in school-age children.

Conclusion

There are age and sex-specific concentration-effect associations between phthalate exposure and fat distribution in Chinese children. Urinary phthalate levels in 11–13 yrs boys were about 30 percent higher than those in girls, and ∑MEHP levels in younger boys (<10 yrs) were significantly higher than those in elder boys (>10 yrs). Associations were positive for MBP and ∑LMP with both BMI z-score and fat distribution in boys >10 years of age, and negative for ∑MEHP with fat distribution in girls <10 years of age.  相似文献   

9.
The degradation of bis(2-ethylhexyl) phthalate (DEHP) and its intermediary hydrolysis products 2-ethylhexanol (2-EH) and mono(2-ethylhexyl) phthalate (MEHP) was investigated in a methanogenic phthalic acid ester-degrading enrichment culture at 37°C. 2-Ethylhexanoic acid (2-EHA), a plausible degradation product of 2-EH, was also studied. The culture readily degraded 2-EH via 2-EHA to methane which was formed in stoichiometric amounts assuming complete degradation of 2-EH to methane and carbon dioxide. MEHP was degraded to stoichiometric amounts of methane with phthalic acid as a transient intermediate. DEHP remained unaffected throughout the experimental period (330 days).Abbreviations 2-EH 2-ethylhexyl alcohol - 2-EHA 2-ethylhexanoic acid - BBP butylbenzyl phthalate - Be-CoA benzoyl Coenzyme A - CoA Coenzyme A - DEHP bis(2-ethylhexyl) phthalate - MEHP mono(2-ethylhexyl) phthalate - MSW municipal solid waste - PA phthalic acid - PAE phthalic acid ester - TMS trimethylsilyl derivative  相似文献   

10.
The widely used plasticizer di(2-ethylhexyl)phthalate (DEHP), its hydrolysis products mono(2-ethylhexyl)phthalate (MEHP) and 2-ethylhexanol, and also phthalic acid have been tested for clastogenic activity in cultured Chinese hamster ovary (CHO) cells. Only MEHP was found to cause chromosome damage. MEHP was without effect in the SCE and HGPRT mutation test in CHO cells. The clastogenicity of MEHP suggests a role for this compound in the observed carcinogenicity of DEHP and its positive effect in the dominant lethal assay.  相似文献   

11.
The abilities of the hepatic peroxisome proliferators (HPPs) clofibrate, di(2-ethylhexyl)phthalate (DEHP), mono(2-ethylhexyl)- phthalate (MEHP), 2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) and tiadenol to induce morphological transformation and to increase the catalase activity of Syrian hamster embryo (SHE) cells were studied. DEHP, MEHP, clofibrate and tiadenol induced morphological transformation of SHE cells and increased the catalase activity. DEHP was more potent than clofibrate and tiadenol in both inducing catalase and morphological transformation, while MEHP seemed more potent than DEHP in inducing catalase, but not morphological transformation, 2,4,5-T and 2,4-D did not induce morphological transformation, but 2,4,5-T was more potent than clofibrate in increasing the catalase activity. These results show that several HPPs induce morphological transformation of SHE cells and an increase in the catalase activity. There is, however, no direct connection between these two parameters, as seen from the results of 2,4,5-T. The tumor promoter TPA, and the metal salt nickel sulphate, induced morphological transformation of SHE cells without any appreciable increase in the catalase activity. These results further corroborate the dissociation between induction of morphological transformation and the increase in catalase activity.Abbreviations Clofibrate ethyl-2-(p-chlorophenox) isobutyrate - 2,4-D 2,4-dichlorophenoxy acetic acid - DEHP di(2-ethylhexyl)phthalate - HPP hepatic peroxisome proliferator - MEHP mono(2-ethylhexyl)phthalate - SHE Syrian hamster embryo - 2,4,5-T 2,4,5-trichlorophenoxy acetic acid - tiadenol di(hydroxyethylthio)-1,10-decane  相似文献   

12.

Background

Insulin resistance (IR) is believed to be the underlying mechanism of metabolic syndrome and type 2 diabetes mellitus (DM). Recently, a few studies have demonstrated that phthalates could cause oxidative stress which would contribute to the development of IR. Therefore, we evaluated whether exposure to phthalates affects IR, and oxidative stress is involved in the phthalates-IR pathway.

Methods

We recruited 560 elderly participants, and obtained blood and urine samples during repeated medical examinations. For the determination of phthalate exposure, we measured urinary levels of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) as metabolites of diethylhexyl phthalates (DEHP), and mono-n-butyl phthalate (MnBP) as a metabolite of di-butyl phthalate (DBP). Malondialdehyde (MDA), an oxidative stress biomarker, was also measured in urine samples. We measured serum levels of fasting glucose and insulin, and derived the homeostatic model assessment (HOMA) index to assess IR. A mixed-effect model and penalized regression spline were used to estimate the associations among phthalate metabolites, MDA, and IR.

Results

The molar sum of MEHHP and MEOHP (∑DEHP) were significantly associated with HOMA (β = 0.26, P = 0.040), and the association was apparent among participants with a history of DM (β = 0.88, P = 0.037) and among females (β = 0.30, P = 0.022). However, the relation between MnBP and HOMA was not found. When we evaluated whether oxidative stress is involved in increases of HOMA by ∑DEHP, MDA levels were significantly associated with increases of ∑DEHP (β = 0.11, P<0.001) and HOMA (β = 0.49, P = 0.049).

Conclusions

Our study results suggest that exposure to DEHP in the elderly population increases IR, which is related with oxidative stress, and that participants with a history of DM and females are more susceptible to DEHP exposure.  相似文献   

13.
In utero exposure to phthalates may adversely affect reproductive development in children due to the anti-androgenic properties of the pthalates. Accordingly, we aimed to determine the effects of in utero and environmental phthalate exposure on the reproductive development of eight-year-old children. We recruited 180 children in central Taiwan during November 2001 and followed them until August 2009 when all children became eight years old. Birth outcomes were collected. Bone age, hormone concentrations, and reproductive developmental stages were determined. Phthalate metabolite levels, including mono-2-ethylhexyl phthalate [MEHP], mono-n-butyl phthalate [MnBP], and mono-benzyl phthalate [MBzP], were assessed. No significant gender differences were found in in utero phthalate exposure. Maternal urinary levels of phthalate metabolites did not correlate significantly with birth outcomes, physical characteristics, and reproductive hormones of the eight-year-old children. Regarding the urinary phthalate metabolite levels of the eight-year-old children, MEHP correlated significantly with serum progesterone levels. MEHP levels in girls correlated significantly with serum progesterone levels. MnBP correlated significantly with serum FSH in all children. In girls, MnBP correlated with serum FSH, and MBzP correlated with serum progesterone and FSH levels. Urinary phthalate metabolite levels did not correlate with female developmental stages or the development of female reproductive organs. Phthalate metabolites did not correlate with the physical characteristics and reproductive hormones in boys. Therefore, environmental exposure to phthalates, as determined by urinary phthalate metabolite levels of eight-year-old children, may affect reproductive hormone levels in children, indicating that further studies on the environmental health effects of phthalates are warranted.  相似文献   

14.
We developed a new and fast multidimensional on-line HPLC-method for the quantitative determination of the secondary, chain oxidized monoester metabolites of diethylhexylphthalate (DEHP), 5-hydroxy-mono-(2-ethylhexyl)-phthalate (5OH-MEHP) and 5-oxo-mono-(2-ethylhexyl)-phthalate (5oxo-MEHP) in urine samples from the general population. Also included in the method were the simple monoester metabolites of DEHP, dioctylphthalate (DOP), dibutylphthalate (DBP), butylbenzylphthalate (BBzP) and diethylphthalate (DEP). Except for enzymatic hydrolysis for deconjugation of the metabolites no further sample pre-treatment step is necessary. The phthalate metabolites are stripped from urinary matrix by on-line extraction on a restricted access material (LiChrospher((R)) ADS-8) precolumn, transferred in backflush-mode and chromatographically resolved by reversed-phase HPLC. Eluting metabolites are detected by ESI-tandem mass spectrometry in negative ionization mode and quantified by isotope dilution. Within a total run time of 25 min we can selectively and sensitively quantify seven urinary metabolites of six commonly occurring phthalate diesters including the controversial di(2-ethylhexyl)phthalate (DEHP). The detection limits for all analytes are in the low ppb range (0.5-2.0 microgram/l urine). First results on a small non-exposed group (n=8) ranged for 5OH-MEHP from 0.59 to 124 microgram/l, for 5oxo-MEHP from 相似文献   

15.
Phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) are being phased out of many consumer products because of their endocrine disrupting properties and their ubiquitous presence in the environment. The concerns raised from the use of phthalates have prompted consumers, government, and industry to find alternative plasticizers that are safe, biodegradable, and have the versatility for multiple commercial applications. We examined the toxicogenomic profile of mono(2-ethylhexyl) phthalate (MEHP, the active metabolite of DEHP), the commercial plasticizer diisononyl cyclohexane-1,2-dicarboxylate (DINCH), and three recently proposed plasticizers: 1,4-butanediol dibenzoate (BDB), dioctyl succinate (DOS), and dioctyl maleate (DOM), using the immortalized TM4 Sertoli cell line. Results of gene expression studies revealed that DOS and BDB clustered with control samples while MEHP, DINCH and DOM were distributed far away from the control-DOS-BDB cluster, as determined by principle component analysis. While no significant changes in gene expression were found after treatment with BDB and DOS, treatment with MEHP, DINCH and DOM resulted in many differentially expressed genes. MEHP upregulated genes downstream of PPAR and targeted pathways of cholesterol biosynthesis without modulating the expression of PPAR’s themselves. DOM upregulated genes involved in glutathione stress response, DNA repair, and cholesterol biosynthesis. Treatment with DINCH resulted in altered expression of a large number of genes involved in major signal transduction pathways including ERK/MAPK and Rho signalling. These data suggest DOS and BDB may be safer alternatives to DEHP/MEHP than DOM or the commercial alternative DINCH.  相似文献   

16.
Mono(2-ethylhexyl)phthalate (MEHP), the primary metabolite of the plasticizer bis(2-ethylhexyl)phthalate (DEHP), was given to guinea pigs and mice and the methods for the isolation, separation and analysis of its metabolites in urine were developed. Following solid-phase extraction with octadecylsilane-bonded silica, individual metabolites were purified and separated using a combination of ion-exchange chromatography on lipophilic gels and reversed-phase high performance liquid chromatography. Analysis of intact conjugates, as well as nonconjugated metabolites, was performed by fast atom bombardment mass spectrometry (FAB-MS) and, after derivation, by gas chromatography-mass spectrometry. Enzymatic methods were used for further characterization. The study confirms glucuronidation as the major conjugation pathway for MEHP in the investigated species. Although less important quantitatively, glucosidation is shown to be an alternative conjugation pathway in mice. The methods developed were applied to a sample of urine from a hyperbilirubinemic newborn infant subjected to DEHP-exposure in conjunction with an exchange transfusion. It was demonstrated that metabolites of DEHP were excreted in amounts which could be analyzed by FAB-MS.  相似文献   

17.
Phthalates are plasticisers added to a wide variety of products, resulting in measurable exposure of humans. They are suspected to disrupt the thyroid axis as epidemiological studies suggest an influence on the peripheral thyroid hormone concentration. The mechanism is still unknown as only few in vitro studies within this area exist. The aim of the present study was to investigate the influence of three phthalate diesters (di-ethyl phthalate, di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP)) and two monoesters (mono-n-butyl phthalate and mono-(2-ethylhexyl) phthalate (MEHP)) on the differentiated function of primary human thyroid cell cultures. Also, the kinetics of phthalate metabolism were investigated. DEHP and its monoester, MEHP, both had an inhibitory influence on 3''-5''-cyclic adenosine monophosphate secretion from the cells, and MEHP also on thyroglobulin (Tg) secretion from the cells. Results of the lactate dehydrogenase-measurements indicated that the MEHP-mediated influence was caused by cell death. No influence on gene expression of thyroid specific genes (Tg, thyroid peroxidase, sodium iodine symporter and thyroid stimulating hormone receptor) by any of the investigated diesters could be demonstrated. All phthalate diesters were metabolised to the respective monoester, however with a fall in efficiency for high concentrations of the larger diesters DnBP and DEHP. In conclusion, human thyroid cells were able to metabolise phthalates but this phthalate-exposure did not appear to substantially influence selected functions of these cells.  相似文献   

18.
Phthalates are ubiquitous industrial chemicals that have been associated with altered reproductive function in rodents. Several human studies have reported an inverse association between male testosterone and phthalate levels. Our aim was to investigate time to pregnancy (TTP) according to serum levels of diethylhexyl phthalate (DEHP) and diisononyl phthalate (DiNP) metabolites in both partners. In 2002-2004 we enrolled 938 pregnant women and 401 male spouses from Greenland, Poland and Ukraine. Six oxidized metabolites of DEHP and DiNP were summarized for each of the two parent compounds to provide proxies of the internal exposure. We used Cox discrete-time models to estimate fecundability ratios (FR) and 95% confidence intervals (95% CIs) for men and women according to their proxy-DEHP or -DiNP serum levels adjusted for a fixed set of covariates.The FR was slightly elevated among women with high levels of DEHP (FR=1.14, 95% CI 1.00;1.30) suggesting a shorter TTP in these women. The FR was unrelated to DiNP in women, whereas the results for men were inconsistent pointing in opposite directions. First-time pregnant women from Greenland with high serum DiNP levels had a longer TTP. This study spanning large contrast in environmental exposure does not indicate adverse effects of phthalates on couple fecundity. The shorter TTP in women with high levels of DEHP metabolites is unexplained and needs further investigation.  相似文献   

19.

Background

The purpose of this study was to examine the relationship of phthalates exposure with thyroid function in pregnant women and their newborns.

Methods

One hundred and forty-eight Taiwanese maternal and infant pairs were recruited from E-Da hospital in southern Taiwan between 2009 and 2010 for analysis. One-spot urine samples and blood samples in the third trimester of pregnant women and their cord blood samples at delivery were collected. Nine phthalate metabolites in urine were determined by triple quadrupole liquid chromatography tandem mass spectrometry, whereas serum from pregnant women and their cord blood were used to measure thyroid profiles (thyroid-stimulating hormone [TSH], thyroxine, free thyroxine, and triiodothyronine) by radioimmunoassay.

Results

Median levels of urinary mono-n-butyl phthalate, mono-ethyl phthalate, and mono-(2-ethyl-5-oxohexyl) phthalate (μg/g creatinine) were the three highest phthalate metabolites, which were 37.81, 34.51, and 21.73, respectively. Using Bonferroni correction at a significance of < 0.006, we found that urinary mono-benzyl phthalate (MBzP) levels were significantly and negatively associated with serum TSH in cord blood (β = -2.644, p = 0.003).

Conclusions

Maternal urinary MBzP, of which the parental compound is butylbenzyl phthalate, may affect TSH activity in newborns. The alteration of thyroid homeostasis by certain phthalates in the early life, a critical period for neurodevelopment, is an urgent concern.  相似文献   

20.
Four metabolites of the rat liver carcinogen di(2-ethylhexyl)phthalate (DEHP) (mono-(2-ethylhexyl)phthalate, mono-(2-ethyl-5-hydroxyhexyl)phthalate, mono-(2-ethyl-5-oxohexyl)phthalate, and mono-(5-carboxy-2-ethylpentyl)phthalate) and 3 structurally related derivatives of di(2-ethylhexyl)adipate (DEHA) (mono-(2-ethylhexyl)adipate, mono-(2-ethyl-5-hydroxyhexyl)adipate, and mono-(2-ethyl-5-oxohexyl)adipate) were tested for mutagenicity in the Ames assay using Salmonella typhimurium strains TA97, TA98, TA100, and TA102, with and without a metabolic activation preparation. Aroclor 1254-induced rat liver S9 and DEHP-induced rat liver S9 were used. Concentrations of these compounds up to 1000 micrograms/plate were negative with all tester strains in the presence or absence of metabolic activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号