首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminin is structurally conserved in the sea urchin basal lamina   总被引:6,自引:0,他引:6       下载免费PDF全文
The extracellular matrix is involved in the regulation of differentiation and morphogenesis. Here we report the identification of a sea urchin embryonic extracellular matrix protein by means of a monoclonal antibody BL1 (Mab BL1) and the isolation of the protein from basal lamina preparations. In paraffin sections of fixed embryos, the antibody can be detected on the basal surfaces of cells after the blastula stage. Immunoprecipitation from embryo lysates and salt extracts of metabolically labeled basal lamina preparations demonstrates that the basal lamina antigen is a large mol. wt protein of approximate mol. wt 106 which consists of disulfide-linked subunits of mol. wts ˜480 000 and 260 000. Electron microscopic images show that the Mab BL1 basal lamina antigen is structurally related to the vertebrate extracellular matrix protein laminin.  相似文献   

2.
Biosynthesis of the epidermal growth factor receptor in A431 cells.   总被引:22,自引:6,他引:16       下载免费PDF全文
A monoclonal antibody R1 against the human epidermal growth factor receptor has been used to study biosynthesis in the carcinoma cell line A431. Two glycoproteins of apparent mol. wts. 95 000 and 160 000 were immunoprecipitated from cells labelled for short times with [35S]methionine or [3H]mannose. Pulse-chase studies show the 160 000 mol. wt. glycoprotein to be a precursor of the 175 000 mol. wt. receptor, but do not establish a precursor role for the 95 000 mol. wt. glycoprotein. Limited proteolysis, peptide mapping, endoglycosidase digestion and the use of monensin and tunicamycin show that the 95 000 mol. wt. glycoprotein is structurally related to the 160 000 mol. wt. glycoprotein and that both glycoproteins have approximately 22 000 - 28 000 mol. wt. of oligosaccharide side chains. Monensin blocks conversion of the 160 000 to the 175 000 mol. wt. mature receptor, a process which involves complexing several of its N-linked oligosaccharide chains. Pulse-chase studies showed that an immunoprecipitable polypeptide of 115 000 mol. wt., or 95 000 mol. wt., in the presence of monensin, was secreted into the medium at late chase times. The possible mechanisms for the origins of all the receptor-related polypeptides are discussed.  相似文献   

3.
A monoclonal antibody (mAb 10A8), derived from mice immunized with fractions of the Golgi apparatus from rat brain neurons, was exploited to isolate and partially characterize a novel glycoprotein of 160 kDa apparent molecular mass which was localized by immunoelectron microscopy in medial cisternae of the Golgi apparatus of neurons, glia, pituitary cells, and rat pheochromocytoma (PC 12). The yield of immunoaffinity purified protein was 0.9 microgram/g of rat brain and represented 3% of the Golgi protein; the protein contained asparagine-linked carbohydrates and sialic acid and N-acetylglucosamine residues; unreduced protein had a greater electrophoretic mobility (130 kDa) consistent with the presence of intrachain disulfide bonds. The bulk of the glycoprotein resided within the membrane and/or luminal face of the Golgi cisternae. After extraction with Triton X-114, the glycoprotein was found in both aqueous and detergent phases. The monoclonal antibody did not inhibit the activities of Golgi enzymes or the uptake of nucleotide sugars by intact Golgi vesicles. The findings indicate that the 160-kDa glycoprotein is a specific constituent of medial Golgi cisternae. The results of this study lend support to the hypothesis that the distributions of glycosyltransferases in the Golgi apparatus are cell specific, since in neurons this sialic acid containing glycoprotein is found in medial rather than in trans and/or in the trans Golgi reticulum cisternae, where sialyltransferases have been localized in other cells. Alternatively, resident neuronal Golgi sialoglycoproteins may acquire sialic acid in trans elements of the apparatus and then shuttle back in medial cisternae.  相似文献   

4.
Summary The formation of three types of vesicles in the oomycetePhytophthora cinnamomi was investigated using ultrastructural and immunocytochemical techniques. All three vesicles are synthesised at the same time; one type serves a storage role; the others undergo regulated secretion. A monoclonal antibody Lpv-1 that is specific for glycoproteins contained in the storage vesicles labelled the endoplasmic reticulum (ER), elements in the transition region between ER and Golgi stack, and cis, medial and trans Golgi cisternae. Cpa2, a monoclonal antibody specific for glycoproteins contained within secretory dorsal vesicles labelled the transition region, cis cisternae and a trans-Golgi network. Vesicles possessing a structure characteristic of mature secretory ventral vesicles were observed in close association with the trans face of Golgi stacks. The results suggest that all three vesicles are formed by the Golgi apparatus. Double immunogold labelling with Lpv-1 and Cpa-2 showed that these two sets of glycoproteins occurred within the same Golgi cisternae, indicating that both products pass through and are sorted concurrently within a single Golgi stack.  相似文献   

5.
We used a monoclonal antibody (10A8), derived from mice immunized with fractions enriched in Golgi apparatus of rat brain neurons, to isolate an intrinsic membrane sialoglycoprotein of 160 KD from rat brain. By immunoelectron microscopy the sialoglycoprotein, named MG-160, was localized in medical cisternae of the Golgi apparatus of neurons, glia, adenohypophysis, and cultured rat pheochromocytoma (PC 12). The monoclonal antibody (MAb) reacted only with rat tissues. Because the epitope(s) recognized by a monoclonal antibody may be restricted, localization of an antigen by a single MAb may not reflect the extent of the distribution of antigen in various species and tissues. Therefore, to further investigate the presence and localization of MG-160 or of an antigenically related protein in several species and tissues, we used a polyclonal antiserum raised against MG-160 purified by antibody (10A8) affinity chromatography. Immunoblots of crude microsomal fractions from rat brain probed with the antiserum against MG-160 showed two to three prominent bands of approximately 160, 150, and 68 KD. Immunoblots of crude microsomal fractions from human, chicken, and frog brains showed prominent bands of 130-140 and 68 KD. Immunoblots of crude membrane fractions from Saccharomyces cerevisiae showed prominent bands of approximately 110-120 and 80 KD. Light microscopic immunocytochemical studies with frog, chicken, mouse, rat, rabbit, bovine, and human brains and with several other rat and human tissues showed a staining pattern consistent with the Golgi apparatus. Immunoelectron microscopy with rat and human brain and with rat myocardium and pituitary showed prominent and exclusive staining of cis, medial, and occasionally trans cisternae of the Golgi apparatus. The cisternae of the trans Golgi network were not stained. These findings are consistent with the hypothesis that a polypeptide related to MG-160 is present in the Golgi apparatus of several tissues in human, rodents, chicken, and frog and possibly in Saccharomyces cerevisiae. The antiserum to MG-160 represents a reliable reagent for immunohistochemical visualization of the Golgi apparatus in brain and several other human tissues obtained at autopsy, fixed with Bouin's, and embedded in paraffin.  相似文献   

6.
Frozen, thin sections of baby hamster kidney (BHK) cells were incubated with either concanavalin A (Con A) or Ricinus communis agglutinin I (RCA) to localize specific oligosaccharide moieties in endoplasmic reticulum (ER) and Golgi membranes. These lectins were then visualized using an anti-lectin antibody followed by protein A conjugated to colloidal gold. All Golgi cisternae and all ER membranes were uniformly labeled by Con A. In contrast, RCA gave a uniform labeling of only half to three-quarters of those cisternae on the trans side of the Golgi stack; one or two cis Golgi cisternae and all ER membranes were essentially unlabeled. This pattern of lectin labeling was not affected by infection of the cells with Semliki Forest virus (SFV). Infected cells transport only viral spike glycoproteins from their site of synthesis in the ER to the cell surface via the stacks of Golgi cisternae where many of the simple oligosaccharids on the spike proteins are converted to complex ones (Green, J., G. Griffiths, D. Louvard, P. Quinn, and G. Warren. 1981. J. Mol. Biol. 152:663-698). It is these complex oligosaccharides that were shown, by immunoblotting experiments, to be specifically recognized by RCA. Loss of spike proteins from Golgi cisternae after cycloheximide treatment (Green et al.) was accompanied by a 50% decrease in the level of RCA binding. Hence, about half of the RCA bound to Golgi membranes in thin sections was bound to spike proteins bearing complex oligosaccharides and these were restricted to the trans part of the Golgi stack. Our results strongly suggest that complex oligosaccharides are constructed in trans Golgi cisternae and that the overall movement of spike proteins is from the cis to the trans side of the Golgi stack.  相似文献   

7.
R G Anderson  R K Pathak 《Cell》1985,40(3):635-643
Recently we demonstrated that low-pH compartments can be visualized with the electron microscope using a basic congener of dinitrophenol, 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine (DAMP), which concentrates in acidic compartments and can be detected by immunocytochemistry with a monoclonal anti-dinitrophenol antibody. We now report that DAMP also accumulates in cisternae and vesicles associated with the trans face of the Golgi apparatus. DAMP rapidly leaves this compartment when cells are incubated with the ionophore monensin, which indicates that accumulation is due to the acidic pH in this compartment. Using indirect protein A-gold immunocytochemistry, we localized fibronectin, a major secretory protein in fibroblasts, to the trans Golgi vesicles that took up DAMP. Therefore, the trans cisternae of the Golgi apparatus and forming secretory vesicles have an acidic pH.  相似文献   

8.
A mouse monoclonal antibody 12B1 was raised against Golgi fractions from Sf21 insect cells and selected as Golgi-specific by immunostaining of the cells. The antigen was purified from the cells by immunoaffinity chromatography with the monoclonal antibody, and its N-terminal and internal amino acid sequences were determined. Based on the partial amino acid sequences, cDNA encoding the antigen protein was cloned and sequenced. The amino acid sequence deduced from the cDNA nucleotide sequence showed a homology to those of CALNUC family proteins, CALNUC (or nucleobindin, a calcium-binding Golgi protein with DNA-binding activity) and protein NEFA (a cell surface protein with DNA-binding, EF-hand, and acidic domains). The insect protein had two EF-hand loops at the same sites as the mammalian CALNUC family proteins, but had no leucine zipper which the mammalian homologues commonly have. An electron microscopic immunoperoxidase study demonstrated that the insect protein was localized in the cis-Golgi cisternae and cis-Golgi networks. Since this localization is identical to that of mammalian CALNUC, the insect protein was considered to be a homologue of CALNUC rather than that of NEFA. Assays involving proteinase K digestion, sodium carbonate extraction and Triton X-114 extraction revealed that the insect CALNUC-like protein was a soluble protein tightly associated with the luminal surface of Golgi membranes as reported for mammalian CALNUC. The insect protein was also shown to have calcium-binding activity as does mammalian CALNUC. These data verify that the insect protein is CALNUC. The existence of CALNUC in insect cells suggests that CALNUC is an essential calcium-binding Golgi protein in a wide range of the animal kingdom. A phylogenetic tree analysis, however, suggested that NEFA was derived from CALNUC long after the segregation of a mammalian ancestor from an insect ancestor.  相似文献   

9.
《The Journal of cell biology》1984,98(6):2035-2046
Normal, unimmunized mouse serum from several strains (BALB/c, C57/b, DBA/2, NZB, SJL, CD/1) contains an endogenous IgG antibody that localizes to the Golgi complex of rat pancreatic acinar cells. Treatment of pancreatic acini with 5 microM monensin resulted in the swelling and vacuolization of the Golgi cisternae, and in a corresponding annular staining by the mouse serum as observed by immunofluorescence, suggesting that the antigen recognized is on the Golgi complex cisternal membrane. The antiserum did not react with pancreatic secretory proteins, and its binding to smooth microsomal membranes was retained following sodium carbonate washing, supporting a Golgi membrane localization. Advantage was taken of the existence of the endogenous murine antibody for the isolation of monoclonal antibodies directed to the Golgi complex of the rat pancreas. Two antibodies, antiGolgi 1 and antiGolgi 2, are described. Both antibodies are IgMs that recognize integral membrane proteins of the trans-Golgi cisternae, with lighter and patchy staining of the pancreatic lumen membrane, as observed both by light and electron microscopy. AntiGolgi 1 recognizes predominately a protein of molecular weight 103,000- 108,000, whereas antiGolgi 2 shows a strong reaction to a 180-kd band as well as the 103-108-kd protein.  相似文献   

10.
Monoclonal antibodies as markers of the endocytic and secretory pathways   总被引:3,自引:0,他引:3  
A galactosyltransferase-rich subcellular fraction and wheat germ agglutinin(WGA)-binding microsomal proteins from rat myeloma cells have been used to immunize BALB/c mice. Fusion of the corresponding spleen cells with the Sp2/0 mouse myeloma has lead to the production of hybridomas secreting monoclonal antibodies directed against four proteins of the Golgi complex (GC) and other smooth membranes (SM). Subcellular fractionation of myeloma cells and rat liver, Triton X-114 partitioning, protease treatment and lectin binding studies have permitted us to identify--by immunoblotting--the molecular weight of the proteins involved, their topology and their mode of association with membranes. Morphological analysis has been performed by immunocytochemistry at the light and electron microscopic level. Judging by these criteria, the GCII antigen is a protein of 44 kDa which is loosely associated with the endodomain of Golgi cisternae. GCIII is a detergent-binding glycoprotein of 130 kDa whose epitope is on the endodomain of Golgi cisternae. SMI is a detergent-binding glycoprotein of 58 to 90 kDa found at several stations along the endocytic path: in coated pits, coated vesicles, endocytic vesicles, but not in lysosomes. The epitope recognized by the corresponding antibody faces the ectodomain. When this antibody is added to living cells in culture, it is rapidly internalized. SMII is a detergent-binding glycoprotein of 140 kDa. The epitope recognized is restricted to membranes of Golgi complex cisternae and multivesicular bodies. These reagents should be useful for dissection and perturbation of vesicular traffic.  相似文献   

11.
A human serum containing a monoclonal anti-(blood-group I) antibody was used to investigate the distribution of blood-group-I antigen on erythrocyte membrane components. Sodium dodecyl sulphate/polyacrylamide-gel-electrophoresis profiles of immuneprecipitates by using 3H-labelled (by the galactose oxidase/NaB3H4 method) and 125I-labelled solubilized stroma were compared. Different radioactive profiles were revealed by the two radiolabelling methods. In the immunoprecipitates the predominant 125I radioactivity within the gel had the electrophoretic mobility of Band-3 protein (apparent mol.wt. 90 000--100 000), whereas the 3H radioactivity revealed a diffusely migrating component(s) (apparent mol.wt. range 40 000--70 000) in addition to radioactivity compatible with glycolipids at the dye front. The diffusely migrating 3H-labelled component was shown to have a similar electrophoretic mobility to a subpopulation of erythrocyte poly(glycosyl)ceramides with blood-group-I activity.  相似文献   

12.
Immunoprecipitates of the T3 antigen prepared from HPB-ALL cells by using the monoclonal antibody UCH-T1 were analysed by SDS-polyacrylamide gel electrophoresis. Cells which had been biosynthetically labelled for up to 4 h gave a major polypeptide of mol. wt. 19 000 plus two weaker, more diffuse bands of mol. wts. 21 000 and 23 000, whereas surface labelled cells gave a prominent band of mol. wt. 19 000, a major band of 21 000 and a weaker diffuse band of approximately 26 000. As judged from their sensitivity to proteinase-K digestion, all the above polypeptides possess a transmembrane orientation. Digestion with endoglycosidases H and F (endo-H and endo-F), and tunicamycin treatment indicate that all the polypeptides, except that of 19 000 mol. wt. are N-glycosylated. The 21 000 and 23 000 mol. wt. chains possess both immature and mature oligosaccharide units, whereas the 26 000 mol. wt. band apparently has mature units only. Pulse chase experiments combined with digestion by endo-F and endo-H suggest that the N-glycosylated polypeptides are derived from two polypeptides of mol. wts. 14 000 and 16 000. It is concluded that the T3 antigen is derived from three different non-glycosylated polypeptides two of which are subsequently N-glycosylated to give the 21 000, 23 000 and 26 000 forms. The cell surface T3 antigen most probably comprises at least two distinct, non-covalently associated polypeptides, but the number and types of polypeptides giving rise to the whole molecule and whether different complexes exist is at present unclear.  相似文献   

13.
Mullerian Inhibiting Substance (MIS) has been localized in the Sertoli cells of the neonatal calf testis using preembedding immunoperoxidase techniques and a monoclonal antibody which almost completely blocks the biological activity of MIS. Both the peroxidase-labeled antibody method using a peroxidase-conjugated F(ab')2 fragment of IgG as a second antibody and the unlabeled antibody peroxidase-antiperoxidase (PAP) method using Fab fragments of the PAP complex were employed. With both methods, MIS was demonstrated within the cisternae of the rough endoplasmic reticulum (RER) and the Golgi apparatus. In the Golgi, MIS was concentrated in the transmost cisternae especially at their peripheral expansions. This study indicates that MIS is synthesized in the RER and transported to the Golgi apparatus, presumably for glycosidation, before secretion from Golgi derived vacuoles.  相似文献   

14.
Multi-vesicular bodies in endocytosis and protoplasts are special cellular structures that are consid-ered to be originated from invagination of plasma membranes. However, the genesis and function of multi-vesicular bodies, the relationship with Golgi bodies and cell walls, and their secretory pathways remain controversial and ambiguous. Using a monoclonal antibody against an animal 58K protein, we have detected, by Western blotting and confocal microscopy, that a 58K-like protein is present in the calli of Arabidopsis thaliana and Hypericum perforatum. The results of immuno-electron microscopy showed that the 58K-like protein was located in the cisternae of Golgi bodies, secretory vesicles, multi-vesicular bodies, cell walls and vacuoles in callus of Arabidopsis thaliana, suggesting that the multi-vesicular bodies may be originated from Golgi bodies and function as a transporter carrying substances synthesized in Golgi bodies to cell walls and vacuoles. It seems that multi-vesicular bodies have a close relationship with the development of the cell wall and vacuole. The possible secretory pathways of multi-vesicular bodies might be in exocytosis, in which multi-vesicular bodies carry sub-stances to the cell wall for its construction, and in endocytosis, in which multi-vesicular bodies carry substances to the vacuole for its development, depending on what they carry and where the materials are transported. We hence propose that there is more than one pathway for the secretion of multi-vesicular bodies. In addition, our results provided a paradigm that a plant molecule, such as the 58k-like protein in callus of Arabidopsis thaliana, can be detected using a cross-reactive monoclonal antibody induced by an animal protein, and illustrate the existence of analog molecules in both animal and plant kingdoms.  相似文献   

15.
《The Journal of cell biology》1994,125(5):997-1013
Human autoantibodies offer unique tools for the study of cellular constituents since they usually recognize highly conserved components, the most difficult to detect due to their low immunogenicity. The serum from a patient with Sjogren's syndrome (RM serum) showing a very high reactivity to the Golgi complex has been shown to immunoprecipitate and to immunodetect by Western blotting experiments a protein mol wt 210,000 (p210) that was shown to be peripheral and cytoplasmically disposed. A close examination of the p210 labeling revealed some differences with Golgi markers: RM serum staining was slightly more extensive than several Golgi markers and showed a discontinuous or granular appearance. Nocodazole induced a specific and early segregation of many p210-associated vesicles or tubules from Golgi apparatus. Upon brefeldin A treatment, p210 did not redistribute in the ER as did other Golgi proteins. In contrast, it exhibited a vesicular pattern reminiscent to that displayed by proteins residing in the intermediate compartment. Double staining immunofluorescence using the RM serum and the marker of the intermediate compartment, p58, revealed segregation of both proteins in control conditions but colocalization in BFA-treated cells. We have further demonstrated by combining different drug treatments that p210-containing elements in brefeldin A- treated cells belong indeed to the intermediate compartment. Experiments on brefeldin A recovery suggested that these p210 elements might play a role in reformation and repositioning of the Golgi apparatus. Ultrastructural localization performed by immunoperoxidase staining allowed us to establish that p210 interacted with the external side of an abundant tubulo-vesicular system on the cis side of the Golgi complex which extended to connecting structures and vesicles between saccules or stacks of cisternae, p210 appears to be a novel protein residing in the cis-Golgi network that may cycle between the Golgi apparatus and the intermediate compartment.  相似文献   

16.
Nucleocytoplasmic traffic of proteins.   总被引:2,自引:0,他引:2  
We have used the synchronized formation of a mixed cytoplasm upon heterokaryon formation as a model for investigating the cisternal-specific transport of resident proteins between neighboring Golgi apparatus. Rat NRK and hamster 15B cells were fused by UV-inactivated Sindbis virus and then incubated for various time periods in the presence of cycloheximide. The resident Golgi apparatus proteins, rat GIMPc and Golgp 125, were localized with species-specific monoclonal antibodies. Immunofluorescent colocalization of rat and hamster Golgi membrane proteins was observed with a t1/2 of 1.75 h at 37 degrees C. Colocalization of resident, but not transient, Golgi membrane protein was concomitant with formation of a large extended Golgi complex and was accompanied by the acquisition of endoglycosidase H resistance by preexisting Golgp 125. Dispersal of the extended Golgi complex by nocodazole revealed that colocalization of resident Golgi proteins was due to intermixing of proteins in the same Golgi element rather than overlapping of closely apposed Golgi structures. Incubation of the polykaryons at 20 degrees C inhibited both the colocalization of GIMPc and Golgp 125 and the formation of an extended Golgi complex. Little change in the number of cisternae/stack in cross sections of the Golgi apparatus was observed upon cell fusion, and in the extended Golgi complex the hamster resident protein remained localized to one side of the Golgi stack. Surprisingly, the morphological identity of the rat and hamster Golgi units appeared to be maintained in the heterokaryons. These results suggest that the intermixing of resident Golgi membrane proteins requires direct physical continuity between Golgi elements and that resident Golgi membrane proteins are preferentially excluded from the non-clathrin-coated transport vesicles budding from Golgi cisternae.  相似文献   

17.
Hexosaminidase forms A and B were isolated from human kidney in a homogeneous state as demonstrated by electrophoretic and enzymic criteria. The enzymes were stable for at least 18 months when stored at -20 degrees C in 0.025 M-phosphate buffer, pH 6.5. The molecular weights of forms A and B were estimated by gel filtration to be 111 000 +/- 1500 and 114 000 +/- 1600 respectively. The molecular weights of hexosamidase A and B subunits were determined by using polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. Hexosaminidase A dissociated into one subunit with mol.wt. 68 000. Hexosaminidase B dissociated into three subunits with mol. wts. 100 000, 68 000 and 37000 respectively, and one protein band of mol.wt. 140 000. After treatment of hexosaminidases A and B with iodoacetic acid, the molecular weights of the carboxymethylated polypeptide subunits were also estimated. Carboxymethylated hexosaminidase A dissociated into one major subunit of mol.wt. 18 000 and two other protein bands of mol.wts. 65 000 and 100 000. Carboxymethylated hexosaminidase B dissociated into one major subunit for mol.wt. 19 000 and an additional band of mol.wt. 37 000. The Km of the enzymes for the synthetic substrate p-nitrophenyl 2-acetamido-2-deoxy-beta-D-glucopyranoside was 0.8 mM. Both enzymes were inhibited or activated by various metal ions. Double pH optima for the enzymes were found at pH 4.5 and 4.8.  相似文献   

18.
Electron microscopic studies showed that the trans-Golgi network (trans indicates the polarity of cisternae within the Golgi apparatus; it is opposite to the cis-face that is adjacent to the rough endoplasmic reticulum) was involved in the processing of the osmiophilic material present in the appendix of the inflorescence of Sauromatum guttatum. This material accumulated in the rough endoplasmic reticulum and in special pockets of the plasma membrane prior to heat production. Associations between the endoplasmic reticulum and trans-Golgi network were observed. The Golgi apparatus was composed of 5–6 dictyosomes on one side and one or two somewhat detached cisternae on the other side. Various nonosmiophilic Golgi-derived vesicles were observed: small ones covered with spike-like material, large ones with a smooth surface, and irregularly shaped ones. These electron-translucent vesicles seemed to accumulate in specific localities at the plasma membrane surface in the vicinity of the osmiophilic material; they were not found when the aroma was released. During heat production, the Golgi structures shrank and the activity of the trans-Golgi network seemed to be reduced. At the same time, coated pits were seen at the plasma membrane surface. In some cells, hypertrophic Golgi apparatuses were seen with only 2–3 dictyosomes that contained granulated material in their lumens. Finally, the osmiophilic material was also found in the plasmodesmata.  相似文献   

19.
Three rat hybridoma lines that produced monoclonal antibodies reacting with the peribacteroid membrane from Pisum sativum were isolated, and these all appeared to recognize the same antigenic structure. Using one of these monoclonal antibodies, AFRC MAC 64, electron microscopy of immunogold-stained thin sections of nodule tissue revealed that the antigen, present in the peribacteroid membrane, was also found in the plant plasma membranes and in the Golgi bodies, but not in the endoplasmic reticulum. When peribacteroid membrane proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose by electro-blotting, it was found that MAC 64 bound to a series of protease-sensitive bands that migrated in the mol. wt. range 50-85 K. The epitope was sensitive to periodate oxidation and its structure may therefore involve the carbohydrate component of a membrane glycoprotein. We suggest that this structure originates in the Golgi apparatus and is subsequently transferred to the peribacteroid membranes and plasma membranes. The monoclonal antibody also reacted with peribacteroid membranes from nodules of Vicia and lupin, and with plasma membranes and Golgi membranes from uninfected plant cells, including root tip cells from onion (Allium cepa), indicating that the antigen is highly conserved in the plasma membranes of plant cells.  相似文献   

20.
We have developed a procedure to isolate the ciliary membranes of Paramecium and have analysed the membrane proteins by electrophoresis on polyacrylamide gels containing either Triton X-100 or sodium dodecyl sulphate. The electrophoretic pattern on gels containing sodium dodecyl sulphate showed 12-15 minor bands of mol.wt. 25 000-150 000 and on major band of mol.wt. 200 000-300 000 that contained approximately three-quarters of the total membrane protein. 2. We present evidence that the major membrane protein is related to, but not identical with, the immobilization antigen (i-antigen), which is a large (250 000 mol.w.), soluble, surface protein of Paramecium. The similarity of the i-antigen and the major membrane protein was shown by immunodiffusion and by the electrophoretic mobilities in sodium dodecyl sulphate of these two proteins from Paramecium of serotypes A and B. The non-identity of these two proteins was shown by their different electrophoretic mobilities on Triton X-100 containing gels and their different solubilities. 3. We propose that the major membrane protein and the i-antigen have a precursor-product relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号