首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the post-uroporphyrin steps in heme and chlorophyll biosynthesis in Chlorobium, we attempted to clone the uroporphyrinogen decarboxylase (hemE) gene. A Chlorobium genomic library was used to transform a restriction-minus Salmonella typhimurium strain. The recombinant DNA molecules were transduced into an auxotrophic Salmonella double mutant (hemA hemE) by phage P22. Faster-growing colonies indicated complementation of the hemE mutation. Each clone was tested by backcross transduction of the mutant. Growth rates of the confirmed clones in LB medium were comparable to wild-type Salmonella. HPLC analysis of the substrate (uroporphyrinogen) and the product (coproporphyrinogen) of the decarboxylase activity was performed in one such clone. This clone showed an active hemE gene within a 4-kb insert. Received: 21 February 2002 / Accepted: 8 May 2002  相似文献   

2.
The green sulfur bacterium, Chlorobium vibrioforme, synthesizes the tetrapyrrole precursor, -aminolevulinic acid (ALA), from glutamate via the RNA-dependent five-carbon pathway. A 1.9-kb clone of genomic DNA from C. vibrioforme that is capable of transforming a glutamyl-tRNA reductase-deficient, ALA-dependent, hemA mutant of Escherichia coli to prototrophy was sequenced. The transforming C. vibrioforme DNA has significant sequence similarity to the E. coli, Salmonella typhimurium, and Bacillus subtilis hemA genes and contains a 1245 base open reading frame that encodes a 415 amino acid polypeptide with a calculated molecular weight of 46174. This polypeptide has over 28% amino acid identity with the polypeptides deduced from the nucleic acid sequences of the E. coli, S. typhimurium, and B. subtilis hemA genes. No sequence similarity was detected, at either the nucleic acid or the peptide level, with the Rhodobacter capsulatus or Bradyrhizobium japonicum hemA genes, which encode ALA synthase, or with the S. typhimurium hemL gene, which encodes glutamate-1-semialdehyde aminotransferase. These results establish that hemA encodes glutamyl-tRNA reductase in species that use the five-carbon ALA biosynthetic pathway. A second region of the cloned DNA, located downstream from the hemA gene, has significant sequence similarity to the E. coli and B. subtilis hemC genes. This region contains a potential open reading frame that encodes a polypeptide that has high sequence identity to the deduced E. coli and B. subtilis HemC peptides. hemC encodes the tetrapyrrole biosynthetic enzyme, porphobilinogen deaminase, in these species. Preliminary evidence was obtained for the existence of a 3.0-kb polycistronic meassge that includes the hemA sequence, in exponentially growing C. vibrioforme cells. Results of condon usage analysis for the C. vibrioforme hemA gene indicate that green sulfur bacteria are more closely related to purple nonsulfur bacteria than to enteric bacteria. Sequences corresponding to a polyadenylation signal and a poly(A) attachment site were found immediately downstream from the 3 end of the hemA open reading frame.  相似文献   

3.
Escherichia coli SASX41B carries the hemA mutation and requires delta-aminolevulinic acid for growth. Strain SASX41B was transformed to prototrophy with pYA1, a plasmid vector carrying a 5.8-kilobase insert of genomic DNA from the green sulfur bacterium Chlorobium vibrioforme. Cell extracts prepared from transformed cells are able to catalyze transfer of label from [1-14C]glutamate or [3,4-3H]glutamyl-tRNA to delta-aminolevullinic acid at rates much higher than extracts of wild-type cells can, whereas extracts prepared from untransformed strain SASX41B cells lack both activities. By comparing the relative abilities of glutamyl-tRNAs derived from several heterologous cell types to function as substrates for the dehydrogenase reaction in extracts of HB101 and SASX41B cells transformed by pYA1, it was determined that the expressed dehydrogenase in the transformed cells resembled that of C. vibrioforme and not that of E. coli. Thus it can be concluded that plasmid pYA1 contains inserted DNA that codes for a structural component of C. vibrioforme glutamyl-tRNA dehydrogenase which confers glutamyl-tRNA substrate specificity.  相似文献   

4.
delta-Aminolevulinic acid, the biosynthetic precursor of tetrapyrroles, is synthesized from glutamate via the tRNA-dependent five-carbon pathway in the green sulfur bacterium Chlorobium vibrioforme. The enzyme glutamyl-tRNA reductase (GTR), encoded by the hemA gene, catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. To characterize the GTR protein, the hemA gene from C. vibrioforme was cloned into expression plasmids that added an N-terminal His(6) tag to the expressed protein. The His-tagged GTR protein was purified using Ni affinity column chromatography. GTR was observable as a 49-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. The native molecular mass, as determined by gel filtration chromatography, appeared to be approximately 40 kDa, indicating that native GTR is a monomer. However, when the protein was mixed with 5% (vol/vol) glycerol, the product had an apparent molecular mass of 95 kDa, indicating that the protein is a dimer under these conditions. Purified His(6)-GTR was catalytically active in vitro when it was incubated with Escherichia coli glutamyl-tRNA(Glu) and purified recombinant Chlamydomonas reinhardtii glutamate-1-semialdehyde aminotransferase. The expressed GTR contained 1 mol of tightly bound heme per mol of pep tide subunit. The heme remained bound to the protein throughout purification and was not removed by anion- or cation-exchange column chromatography. However, the bound heme was released during SDS-PAGE if the protein was denatured in the presence of beta-mercaptoethanol. Added heme did not inhibit the activity of purified expressed GTR in vitro. However, when the GTR was expressed in the presence of 3-amino-2,3- dihydrobenzoic acid (gabaculine), an inhibitor of heme synthesis, the purified GTR had 60 to 70% less bound heme than control GTR, and it was inhibited by hemin in vitro.  相似文献   

5.
A cDNA fragment was cloned from rice immature seeds by the RT-PCR method. The deduced amino acid sequence of the cDNA showed a high degree of identity with UDP-d-glucuronic acid decarboxylase (UXS) from other plants and was most similar to the soluble UXS from Arabidopsis. The recombinant protein, expressed in an Escherichia coli system, catalysed the conversion of UDP-d-glucuronic acid to UDP-d-xylose, confirming that the gene encoded UXS. The uxs gene was expressed in mature, harvested rice seeds as well as in immature seeds 14 d post-anthesis, suggesting that the uxs gene is necessary at the beginning of the germination period. This is the first report of the cloning of the uxs gene from monocots.  相似文献   

6.
We previously reported the DNA sequence and expression of the Chlorobium vibrioforme glutamyl-tRNA reductase (hemA) gene (Majumdar et al., Arch Microbiol 156:281, 1991). The sequence downstream of the hemA gene indicated homology to Escherichia coli and Bacillus subtilis porphobilinogen deaminase (hemC) gene. The Chlorobium gene was confirmed to be the porphobilinogen deaminase gene, and complete sequence of the structural gene was obtained. A 2.8-kb DNA fragment containing the 1.3-kb hemA gene of Chlorobium was cloned into a hemC auxotroph (Sz16) of Bacillus subtilis, and complementation of the auxotroph to prototrophy was achieved. DNA sequence data showed a single open reading frame of 840 bp coding a protein of 279 amino acid residues. The deduced amino acid sequence of the Chlorobium porphobilinogen deaminase revealed 39% to 46% homology with the corresponding prokaryotic and eukaryotic sequences. Received: 20 September 1996 / Accepted: 26 October 1996  相似文献   

7.
8.
9.
A bacterium (BH2) that was found to produce a large amount of γ-aminobutyric acid (GABA) was isolated fromKimchi, a traditional fermented food in Korea. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that BH2 belonged to the genusLactobacillus brevis. Under controlled conditions in MRS broth (Difco) with 5% monosodium glutamate, this strain produced GABA at a concentration of 194 mM with a 73% GABA conversion rate after 48 h. A full-length glutamate decarboxylase (gad) gene was cloned by the rapid amplification of cDNA ends (RACE) PCR. The open reading frame (ORF) of thegad gene was composed of 1,407 nucleotides and encoded a protein (468 amino acids) with a predicted molecular weight of 53.5 kDa. The deduced amino acid sequence of GAD fromL. brevis showed 97.5 and 82.7% identities to theL. brevis OPK-3 GAD andL. plantarum WCFS1 GAD, respectively. Thegad gene was expressed inEscherichia coli cells and the expression was confirmed by SDS-PAGE analysis and enzyme activity studies.  相似文献   

10.
Cloning and expression of the Salmonella enterotoxin gene.   总被引:5,自引:1,他引:5       下载免费PDF全文
This report examines the genetic basis for Salmonella typhimurium Q1 enterotoxin production. A 918-base-pair XbaI-HincII fragment of plasmid pJM17, composed of cholera toxin (CT) coding sequences (ctxAB), was used as a gene probe. With this probe, the S. typhimurium enterotoxin was identified on a 6.3-kilobase EcoRI-PstI fragment of chromosomal DNA from plasmidless strain Q1. We cloned this 6.3-kilobase fragment into Escherichia coli RR1. The genetic map of the cloned Salmonella enterotoxin (stx) gene was similar but not identical to the CT and E. coli heat-labile enterotoxin genes. By using synthetic oligonucleotides derived from the sequences of CT subunits A (ctxA) and B (ctxB), it was revealed that there were some conserved regions of DNA encoding the enterotoxins of strain Q1 and Vibrio cholerae. Expression of the cloned stx gene in minicells and subsequent Western blot (immunoblot) analysis with CT antitoxin demonstrated that the Salmonella enterotoxin had two or more subunits with molecular sizes of 45, 26, and 12 kilodaltons. Crude cell lysates of E. coli RR1(pCHP4), containing the cloned Salmonella enterotoxin gene, elicited fluid secretion in ligated rabbit intestinal loops and firm induration in rabbit skin. Both of these enterotoxic responses were neutralized by antisera specific for CT. Mucosal tissue from positive intestinal loops contained elevated levels of cyclic AMP. These data suggest some evolutionary relatedness between the enterotoxin genes of S. typhimurium and V. cholerae.  相似文献   

11.
The biosynthesis of 2-oxo-3-methylvalerate in Chlorobium vibrioforme was investigated by 13C nuclear magnetic resonance spectroscopy of the oxoacid formed from 13C-labeled acetate by washed suspensions. The threonine pathway could be excluded, and the results are in accord with a mechanism for the formation of 2-oxobutyrate from acetyl coenzyme A and pyruvate via citramalate.  相似文献   

12.
13.
Mouse uroporphyrinogen decarboxylase: CDNA cloning,expression, and mapping   总被引:1,自引:0,他引:1  
Uroporphyrinogen decarboxylase (URO-decarboxylase; EC 4.1.1.37), the heme biosynthetic enzyme responsible for the conversion of uroporphyrinogen III to coproporphyrinogen III, is the enzymatic defect in porphyria cutanea tarda, the most common porphyria. The mouse URO-decarboxylase cDNA was isolated from a mouse adult liver cDNA library. The longest clone of 1.5 kb, designated pmUROD-1, had 5′ and 3′ untranslated sequences of 281 and 97 bp, respectively, and an open reading frame of 1104 bp encoding a 367-amino acid polypeptide with a predicted molecular mass of 40,595 Da. The mouse and human coding sequences had 87.8% and 90.0% nucleotide and amino acid identity, respectively. The authenticity of the mouse cDNA was established by expression of the active enzyme in Escherichia coli. In addition, the analysis of two sets of multilocus genetic crosses localized the mouse gene, Urod, on Chromosome (Chr) 4, consistent with the map location of the human gene to a position of conserved synteny on Chr 1. The availability of the mouse URO-decarboxylase should facilitate studies of the structure and organization of the mouse genomic sequence and the development of a mouse model of this inherited porphyria. Received: 27 November 1995 / Accepted: 17 January 1996  相似文献   

14.
The genes (mdh) encoding malate dehydrogenase (MDH) from the mesophile Chlorobium vibrioforme and the moderate thermophile C. tepidum were cloned and sequenced, and the complete amino acid sequences were deduced. When the region upstream of mdh was analyzed, a sequence with high homology to an operon encoding ribosomal proteins from Escherichia coli was found. Each mdh gene consists of a 930-bp open reading frame and encodes 310 amino acid residues, corresponding to a subunit weight of 33,200 Da for the dimeric enzyme. The amino acid sequence identity of the two MDHs is 86%. Homology searches using the primary structures of the two MDHs revealed significant sequence similarity to lactate dehydrogenases. A hybrid mdh was constructed from the 3' part of mdh from C. tepidum and the 5' part of mdh from C. vibrioforme. The thermostabilities of the hybrid enzyme and of MDH from C. vibrioforme and C. tepidum were compared.  相似文献   

15.
16.
The composition, abundance and apparent molecular masses of chlorosome polypeptides from Chlorobium tepidum and Chlorobium vibrioforme 8327 were compared. The most abundant, low-molecular-mass chlorosome polypeptides of both strains had similar electrophoretic mobilities and abundances, but several of the larger proteins were different in both apparent mass and abundance. Polyclonal antisera raised against recombinant chlorosome proteins of Cb. tepidum recognized the homologous proteins in Cb. vibrioforme, and a one-to-one correspondence between the chlorosome proteins of the two species was confirmed. As previously shown [Ormerod et al. (1990) J Bacteriol 172: 1352–1360], acetylene strongly suppressed the synthesis of bacteriochlorophyll c in Cb. vibrioforme strain 8327. No correlation was found between the bacteriochlorophyll c content of cells and the cellular content of chlorosome proteins. Nine of ten chlorosome proteins were detected in acetylene-treated cultures, and the chlorosome proteins were generally present in similar amounts in control and acetylene-treated cells. These results suggest that the synthesis of chlorosome proteins and the assembly of the chlorosome envelope is constitutive. It remains possible that the synthesis of bacteriochlorophyll c and its insertion into chlorosomes might be regulated by environmental parameters such as light intensity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

17.
The green sulfur bacterium Chlorobium vibrioforme contains two types of bacteriochlorophyll (Bchl). The minor pigment, Bchl a, is associated primarily with the cell membrane and its reaction centers; and the major light-harvesting antenna pigment, Bchl d, is found primarily in the chlorosomes, which are attached to the inner surface of the cell membrane. Anesthetic gases, such as N2O, ethylene, and acetylene, were found to inhibit the synthesis of Bchl d, but not of Bchl a, thus allowing the cells to grow at high light intensities with a greatly diminished content of antenna pigment. Chlorosomes were absent or sparse in inhibited cells. Porphyrins accumulated in the inhibited cells. The major one was identified as the Bchl precursor magnesium-protoporphyrin IX monomethyl ester (Mg-PPME) by comparative absorption and fluorescence spectroscopy and thin-layer chromatography of the porphyrin and its derivatives with those of authentic protoporphyrin IX. Small amounts of Mg-PPME were present in control cells, but the addition of inhibitor caused a rapid increase in the Mg-PPME concentration, accompanying the inhibition of Bchl d synthesis. Cells grown in the presence of ethephon (as a source of ethylene) and allowed to stand in dim light for long periods accumulated large amounts of PPME and other porphyrins and excreted or released porphyrins, which accumulated as a brown precipitate in the culture. Inhibition of Bchl d synthesis was relieved upon removal of the inhibitor. These results suggest that the gases act at a step in pigment biosynthesis that affects the utilization of Mg-PPME for isocyclic ring formation. Synthesis of Bchl d and Bchl a may be differentially affected by the gases because of compartmentation of their biosynthetic apparatus or because competition for precursors favors Bchl a synthesis. An ethephon-resistant mutant strain was isolated by selection for growth in dim, long-wavelength light. The mutant cells were also resistant to acetylene, but not to N2O. The ability to reversibly generate viable Chlorobium cells that lack antenna pigments may be useful in photosynthesis research. The ethephon- and acetylene-resistant strain may be useful in the study of the enzymes and genes that are involved in the biosynthetic step that the gases affect.  相似文献   

18.
We have cloned and sequenced a DNA fragment that encodes the arylmalonate decarboxylase (AMDase) gene from Alcaligenes bronchisepticus KU 1201. The AMDase gene consists of an open reading frame of 720 nucleotides, which specifies a 240-amino-acid protein of relative molecular mass (Mr) 24734. The Mr deduced from the AMDase gene is in good agreement with that of the AMDase isolated from A. bronchisepticus. No TATA or TTGA sequence was observed within the cloned DNA fragment, but the fragment was expressed in Escherichia coli by the lac promoter of pUC19. The enzyme produced in E. coli has the same Mr and the same enzyme activity as the purified from A. bronchisepticus. Comparison of the DNA sequence and the deduced amino acid sequence of AMDase with available DNA and amino acid sequence data bases revealed that there are no significant sequence homologies.Correspondence to: Hiromichi Ohta  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号