首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The profundal zone of Lake Esrom, Denmark has a dense population of Chironomus anthracinus, which survives 2–4 months of oxygen depletion each summer during stratification. The metabolism of 3rd and 4th instar larvae was examined in regard to variation in biomass and temperature. Respiration at air saturation was described by a curvilinear multiple regression relating oxygen consumption to individual AFDW and temperature. At 10 °C and varying oxygen regimes the O2 consumption and CO2 production of 4th instar larvae were almost unaltered from saturation to about 3 mg O2 l–1, but decreased steeply below this level. The respiratory quotient increased from 0.82 at saturation to about 3.4 at oxygen concentrations near 0.5 mg O2 l–1. This implied a shift from aerobic to partially anaerobic metabolism. At 0.5 mg O2 l–1 the total energy production equalled 20% of the rate at saturation of which more than one third was accounted for by anaerobic degradation of glycogen. This corresponded to a daily loss of 12 µg mg AFDW–1 or approximately 5% of the body reserves. At unchanged metabolic rate the glycogen store would last three weeks, but long term oxygen deficiency causes a further suppression of the energy metabolism in C. anthracinus.  相似文献   

2.
Organic sediments in freshwaters are regularly subject to low concentrations of oxygen. The ability of detritivores to sustain their feeding in such conditions should therefore be of importance for the decomposition process. In the present study, aquaria were used to determine processing rates of five lake-dwelling shredders at three different oxygen concentrations; normoxic (9 mg O2 l–1) and two levels of hypoxia (1 and 2 mg O2 l–1). Discs of alder leaves (Alnus glutinosa (L.)) were used as food. Four species of caddisfly larvae (Trichoptera Limnephilidae) and the isopod, Asellus aquaticus (L.) were compared in the experiments. Significant differences in processing rates per g animal biomass were found both at normoxia and 2 mg oxygen l–1. At l mg O2 l–1 none of the invertebrates fed on leaf discs. The caddisfly larvae Halesus radiatus (Curtis), being one of the two most efficient shredders at normoxia, did not feed at 2 mg oxygen l–1. The other species fed at rates 15–50 of that at normoxia. The least efficient shredder at normoxia, A. aquaticus was similar to two of the trichopterans at 2 mg O2 l–1. This study shows that the importance of specific shredder species may shift in case of hypoxia. Species-specific traits regarding oxygen sensitivity may also be influential for distribution patterns of shredder species both within and between lakes.  相似文献   

3.
Summary The oxygen and carbon dioxide transporting properties of the haemolymph from an amphibious Australian crab,Holthuisana transversa were investigated. Within the temperature range 15 to 35°C increasing temperature markedly decreased oxygen affinity (H=–54 kJ·mol–1). The Bohr effect was small at all temperatures with a mean value of –0.13. Over the temperature range 15–35°C there was a significant increase in the cooperativity of oxygen binding. Changing the concentration of Ca,l-lactate or haemocyanin in the haemolymph could elicit no significant change in either O2 affinity or cooperativity of O2 binding. There was no evidence in support of a specific effect of CO2 on oxygen affinity of either non-dialysed or dialysed haemolymph.The amount of CO2 that could be carried byH. transversa haemolymph was significantly reduced by increased temperature (approx. 14 to 12.5 mmol·l–1 CO2). Comparisons of oxygenated and deoxygenated haemolymph at a fixed pH were unable to demonstrate the presence of a significant Haldane effect. Combining data from oxygenated and deoxygenated haemolymph the buffer value was calculated to be in the range –6.2 to –8.5 mmol·l–1 HCO 3 ·pH unit–1.The insensitivity ofH. transversa haemocyanin function to all modulating influences except temperature is discussed with respect to the ecology of this crab.  相似文献   

4.
Phytoplankton dynamics in a deep, tropical, hyposaline lake   总被引:3,自引:3,他引:0  
The annual variation of the phytoplankton assemblage of deep (64.6 m), hyposaline (8.5 g l–1) Lake Alchichica, central Mexico (19 ° N, 97° W), was analyzed in relation to thermal regime, and nutrients concentrations. Lake Alchichica is warm monomictic with a 3-month circulation period during the dry, cold season. During the stratified period in the warm, wet season, the hypolimnion became anoxic. N–NH3 ranged between non detectable (n.d.) and 0.98 mg l–1, N–NO2 between n.d. and 0.007 mg l–1, N–NO3 from 0.1 to 1.0 mg l–1 and P–PO4 from n.d. to 0.54 mg l–1. Highest nutrient concentrations were found in the circulation period. Chlorophyll a varied from <1 to 19.8 g l–1 but most values were <5 g l–1. The euphotic zone (>1% PAR) usually comprised the top 15–20 m. Nineteen algae species were identified, most of them are typical inhabitants of salt lakes. Diatoms showed the highest species number (10) but the small chlorophyte Monoraphidium minutum, the single-cell cyanobacteria, Synechocystis aquatilis, and the colonial chlorophyte, Oocystis parva, were the numerical dominant species over the annual cycle. Chlorophytes, small cyanobacteria and diatoms dominated in the circulation period producing a bloom comparable to the spring bloom in temperate lakes. At the end of the circulation and at the beginning of stratification periods, the presence of a bloom of the nitrogen-fixing cyanobacteria, N. spumigena, indicated nitrogen-deficit conditions. The well-stratified season was characterized by low epilimnetic nutrients levels and the dominance of small single-cell cyanobacteria and colonial chlorophytes. Phytoplankton dynamics in tropical Lake Alchichica is similar to the pattern observed in some deep, hyposaline, North American temperate lakes.  相似文献   

5.
The robust redhorse, Moxostoma robustum (Teleostei: Catostomidae), is an imperiled sucker native to large rivers of the Atlantic slope of the southeastern United States. Juvenile M. robustum were tested for tolerances to temperature, salinity, pH, and hypoxia in order to evaluate basic early life-history requirements. Static (acute) tests resulted in estimates of mean lower temperature tolerances (5.3–19.4 °C) that varied with prior thermal acclimation and indicated no apparent difference in tolerance among fish 30, 60, and 90 days old. Fish acclimated to 20 °C and 30 °C had significantly different mean critical thermal maxima (34.9 °C and 37.2 °C, respectively) and exhibited pronounced increased opercular ventilation rates with elevated temperatures. Fish exposed to acute and chronic increases in salinity showed unusual patterns of mortality above the isosmotic point (9 ppt) that reflected possible differences in body mass and prior acclimation conditions (i.e., water ionic composition); small fish and those held in soft water were the least tolerant of increased salinity. Abrupt exposure to extreme pH values resulted in greater than 50% mortality at pH values below 4.3 and above 9.5 within a 96-hour period. Fish exposed to progressive hypoxia utilized aquatic surface respiration at a mean oxygen concentration of 0.72–0.80 mg O2 l-1 (20 °C and 30 °C acclimated fish, respectively), and lost equilibrium at 0.54–0.57 mg O2 l-1. Juvenile M. robustum are moderately tolerant of a wide range of ambient physicochemical parameters, but further research is needed to determine how both abiotic and biotic factors have contributed to population decline and extirpation of this species.  相似文献   

6.
Exercise metabolism in two species of cod in arctic waters   总被引:2,自引:2,他引:0  
The northern range of Atlantic cod (Gadus morhua), overlaps the southern range of the Greenland cod (Gadus ogac), in the coastal waters of Western Greenland. The availability of a temperate water species (G. morhua) in the same area and oceanographic conditions as a polar species (G. ogac) presented us with the ideal circumstances to test the hypothesis of metabolic cold adaptation (MCA) since many of the problems associated with MCA studies (adaptation of the animals beyond their normal temperature range or mathematical extrapolation of data to common temperatures) could thus be avoided. We therefore used a swim tunnel to measure oxygen consumption in fish at 4°C over a range of swimming speeds and following exhaustion, monitored the size of the oxygen debt and time of oxygen debt repayment. There were no significant differences in standard (60–72 mg O2 kg–1· hr–1), routine (76 mg O2 kg–1·hr–1), active (137mg O2 kg–1·hr–1), or maximal (157 mg O2 kg–1·hr–1) metabolic rate, metabolic scope (2.5) or critical swimming speed (2.2 BL·s–1) between the two species. Following exhaustive swimming, however, the half-time for oxygen debt repayment in G. ogac (43 min) was almost twice that of G. morhua (25 min). Despite its circumpolar distribution, therefore, there was no evidence of MCA in G. ogac.  相似文献   

7.
Summary The growth parameters ofPenicillium cyclopium have been evaluated in a continuous culture system for the production of fungal protein from whey. Dilution rates varied from 0.05 to 0.20 h–1 under constant conditions of temperature (28°C) and pH (3.5). The saturation coefficients in the Monod equation were 0.74 g l–1 for lactose and 0.14 mg l–1 for oxygen, respectively. For a wide range of dilution rates, the yield was 0.68 g g–1 biomass per lactose and the maintenance coefficient 0.005 g g–1 h–1 lactose per biomass, respectively. The maximum biomass productivity achieved was 2 g l–1 h–1 biomass at dilution rates of 0.16–0.17 h–1 with a lactose concentration of 20 g l–1 in the feed. The crude protein and total nucleic acid contents increased with a dilution rate, crude protein content varied from 43% to 54% and total nucleic acids from 6 to 9% in the range of dilution rates from 0.05 to 0.2 h–1, while the Lowry protein content was almost constant at approximately 37.5% of dry matter.Nomenclature (mg l–1) Co initial concentration of dissolved oxygen - (h–1) D dilution rate - (mg l–1) K02 saturation coefficient for oxygen - (g l–1) Ks saturation coefficient for substrate - (g g–1 h–1) lactose per biomass) m maintenance energy coefficient - (mM g–1 h–1O2 per biomass) Q02 specific oxygen uptake rate - (g l–1) S residual substrate concentration at steady state - (g l–1) So initial substrate concentration in feed - (min) t1/2 time when Co is equal to Co/2 - (g l–1) X biomass concentration - (g l–1) X biomass concentration at steady state - (g g–1 biomass per lactose) YG yield coefficient for cell growth - (g g–1 biomass per lactose) Yx/s overall yield coefficient - (h–1) specific growth rate  相似文献   

8.
Oxygen consumption rates were measured in chicks (0–7 days of age), and in non-brooding and brooding adults. Brooded chicks maintained a constant oxygen consumption rate at a chamber ambient temperature of 10–35°C (0–5 days of age: 2.95ml O2·g-1·h-1 and 6–17 days of age: 5.80 ml O2·g-1·h-1) while unbrooded chicks increased oxygen consumption rate at ambient temperature below 30°C to double the brooded oxygen consumption rate at 25 and 15°C for chicks < 5 days of age and>5 days of age, respectively. The massspecific oxygen consumption rate of breeding male and females (non-brooding) were significantly elevated within the thermoneutral zone thermal neutral zone (28–35°C) in comparison to non-breeding adults. Below the thermal neutral zone, oxygen consumption rate was not significantly different. The elevation in oxygen consumption rate of breeding quail was not correlated with the presence of broodpatches, which developed only in females, but is a seasonal adjustment in metabolism. Male and females that actively brooded one to five chicks had significantly higher oxygen consumption rate than non-brooding quail at ambient temperature below 30°C. Brooding oxygen consumption rate was constant during day and night, indicating a temporary suppression of the circadian rhythm of metabolism. Brooding oxygen consumption rate increased significantly with brood number, but neither adult body mass nor adult sex were significant factors in the relationship between brooding oxygen consumption rate and ambient temperature. The proportion of daylight hours that chicks were brooded by parents was negatively correlated with ambient temperature. After chicks were 5 days old brooding time was reduced but brooding oxygen consumption rate was unchanged. Heat from the brooding parent appeared to originate mainly from the apteria under the wings and legs rather than the broodpatch. The parental heat contribution to chick temperature regulation below the chicks' thermal neutral zone is achieved by increasing parental thermal conductance by a feedback control similar to that suggested for the control of egg temperature via the brood-patch. It is concluded that the brooding period is an energetic burden to parent quail, and the magnitude of the cost increases directly with brood number and inversely with ambient temperature during this period. The oxygen consumption rate of brooding parents was 5.80–6.90 ml O2·g-1·h-1 (ambient temperature 10–15°C) at night and up to 5.10 ml O2·g-1·h-1 (ambient temperature 18°C) during the day, which are 100 and 40% higher than non-brooding birds, respectively.Abbreviations bm body mass - SMR standard metabolic rate - T a ambient temperature - T b body temperature - I/O2 oxygen consumption rate - C wet wet thermal conductance - TNZ thermal neutral zone - ANOVA analysis of variance - ANCOVA analysis of covariance  相似文献   

9.
Lactobacillus plantarum produced an extracellular tannase after 24 h growth on minimal medium of amino acids containing 2 g tannic acid l–1. Enzyme production (6 U ml–1) was optimal at 37 °C and pH 6 with 2 g glucose l–1 and 7 g tannic acid l–1 in absence of O2.  相似文献   

10.
Summary The metabolic and cardiac responses to temperature were studied in two species (four subspecies) of western chipmunks (genusEutamias), inhabiting boreal and alpine environments. A specially designed (Fig. 1) implantable biopential radiotransmitter was used to measure heart rate in unrestrained animals. The estimated basal metabolic rates (EBMR) were 1.78 (E. minimus borealis), 1.64 (E. m. oreocetes), 1.50 (E. m. operarius), and 1.69 ml O2 g–1 h–1 (E. amoenus luteiventris), or 839, 752, 698, and 628 ml O2 kg–0.75 h–1, respectively, for the four subspecies (Table 1). The two alpine species (E.m.or. andE.m.op.) had significantly lower EBMR than both of their boreal counterparts. The EBMR from all animals are 120–135% of the predicted values based on body weights of the animals. The thermal neutral zone for the four subspecies ranged from 23.5 to 32°C and the minimum thermal conductances were 0.113, 0.111, 0.112 and 0.112 ml O2 g–1 h–1 °C–1, respectively, or 54.4, 54.0, 50.4 and 52.1 ml O2 kg–0.75 h–1 °C–1, respectively (Fig. 2). No interspecific diffence in conductance was observed. These values are 72 to 85% of their weight specific values. The body temperature ranged between 35.0 and 39.5°C and was usually maintained between 36 and 38°C in all subspecies between ambient temperatures of 3 and 32°C. The estimated basal heart rates were 273, 296, 273 and 264 beats/min, respectively, for the four subspecies, 49–55% of their predicted weight specific values. The resultant oxygen pulses (metabolic rate/heart rate) were 5.49, 4.50, 4.48 and 5.56×10–3 ml O2/beat, respectively, which are 2 to 2.4 times their weight specific values (Table 2).The observed reduction of basal heart rate without the corresponding decreases of basal metabolic rate and body temperature indicate sufficient compensatory increases in stroke volume and/or A-V oxygen difference at rest. Such cardiovascular modifications provide extra reserves when demand for aerobic metabolism rises during bursts of activity typically observed in the western chipmunk.Abbreviations A-V arterio-venous - EBMR estimated basal metabolic rate (ml O2 g–1 h–1) - HR heart rate (beats/min) - MR metabolic rate (ml O2 g–1 h–1) - OP oxygen pulse (ml O2/heart beat) - Ta, Tb ambient and body temperature (°C)  相似文献   

11.
Summary Seasonal changes in the activity of phytoplankton and benthic algae in relation to diurnal oxygen pulses were investigated in a 120 cm deep, brackish hypertrophic ditch. A vertical chloride gradient was built up by saline seepage and drain-water effluent. The stable chloride gradient could lead to oxygen stratification near the sediment, and to oxygen gradients towards the water surface. The oxygen gradients were rather unstable, depending on the chloride gradient and the wind velocity.Light was limiting photosynthesis both in summer and in winter. Surface oxygen maxima increased with solar radiation during summer.In summer the diatomCyclotella caused surface oxygen maxima at light saturation in the late afternoon. Simultaneously, the dominant flagellatesPeridinium andChlamydomonas produced oxygen in dim light, probably choosing their favourite light energy level by vertical migration. Oxygen fluctuations ranged from 0 to 34 mg O2.l–1 in a 100 cm vertical profile above a 20 cm anoxic layer. The amplitude of the diurnal oxygen maxima varied from 10 to 34 mg O2.l–1.In winter the water became very clear. The oxygen gradient was inverted during the day showing a characteristic oxygen maximum above the bottom, produced by benthicAchnanthes colonies.Communication no. 193.  相似文献   

12.
R.S.S. Wu  N.Y.S. Woo 《Hydrobiologia》1984,119(3):209-217
The respiratory responses and tolerance of hypoxia were studied in two marine teleosts, the red grouper (Epinephelus akaara, a sluggish species) and the black sea bream (Mylio macrocephalus, an active species). Neither species showed abnormal behaviour or mortality when exposed to 2 mg O2 l–1 for 7 h. The black sea bream was, however, comparatively more tolerant when exposed to 1 mg O2 l–1, but tolerance of both species became similar under extremely hypoxic conditions (i.e. 0.5 mg O2 l–1). In contrast to most other teleosts, both species showed a reduction in opercular beating rate during hypoxia, and oxygen conformity was found in the range of 0.5 to 7.0 mg O2l –1. O2 dissociation curves were constructed, and the P50 value of the black sea breams (27 ± 5.6 mm Hg) was found to be much lower than that of the red groupers (50 ± 2.5 mm Hg). For both species, the general levels of venous PO2 showed a direct relationship to ambient PO2, and were markedly reduced after 1 h exposure to various levels of hypoxia. Compared with the red groupers, the black sea breams appeared to be more able to maintain its venous PO2 levels during prolonged hypoxic exposure.  相似文献   

13.
Summary This study examines the hypothesis that mammalian species with wide fluctuations in population size will have greater metabolic rates than species with smaller population fluctuations. We tested this hypothesis using two microtine rodents — the beach vole (Microtus breweri) and the meadow vole (M. pennsylvanicus). Although these species experience similar climatic regimes, eat similar foods, and have a very close phylogenetic relationship, they show marked differences in demography. Microtus pennsylvanicus is prone to large supraannual fluctuations in population size, while M. breweri is essentially acyclical. Metabolic rate (oxygen consumption) of each species was measured using open-flow respirometry at ambient temperatures ranging from 2 to 34° C. Basal metabolic rate of M. pennsylvanicus (1.81 ml O2 g–1 h–1) was significantly greater than that of M. breweri (1.39 ml O2 g–1 h–1). The lower critical temperature, estimated by continuous two-phase regression, was 28.9° C for M. pennsylvanicus and 29.8° C for M. breweri. Regression lines below thermoneutrality did not differ in slope, but the elevation for M. pennsylvanicus was significantly higher. Thus, M. pennsylvanicus has a higher metabolic rate at all temperatures examined. These results support the hypothesis that metabolic rate is positively correlated with the extent of population fluctuation. We suggest that further evidence for, or against, this hypothesis should be found by comparing closely matched species pairs, rather than resorting to confounded allometric comparisons of ecologically and phylogenetically diverse taxa.  相似文献   

14.
Summary A method for obtaining a high frequency of haploid asparagus embryos through anther culture was developed. Flowers collected from plants in the field in July, August and September 1990, for the genotype G203, were stored at 5°C for 24 h. Anthers were placed on Murashige and Skoog medium (MS) containing 500 mg l –1 casein hydrolysate, 800 mg l–1 glutamine, 2 mg l –1 NAA, 1 mg l –1 BA and 5 % sucrose at 32 °C in the dark for three to four weeks to induce calli. Calli were then grown at 25 °C with a 16 h photoperiod for three to four weeks. Developing embryos and calli were transferred to embryo maturation medium, MS containing 6% sucrose, 0.1 mg l –1 NAA, 0.1 mg l –1 kinetin and 0.65 mg l –1 ancymidol, for four weeks. More than 50% of the recovered mature embryos germinated on MS containing l mg l –1 GA3. Anthers with microspores at the late-uninucleate stage had the highest frequency of total and embryogenic calli formation, 40% and 15%, respectively. Each embryogenic callus usually produced 10–15 embryos. Aproximately 75 plants per 100 anthers cultured were recovered: 76% haploid, 22% diploid and 2% triploid. High temperature was critical for the induction of embryogenic callus.Abbreviations NAA naphthaleneacetic acid - BA 6-benzylaminopurine - MS Murashige and Skoog (1962)  相似文献   

15.
Antiviral carbohydrates from marine red algae   总被引:2,自引:2,他引:0  
Neushul  Michael 《Hydrobiologia》1990,197(1):99-104
The solubility of the O2 in the Dead Sea brine was determined over the temperature range 5 °C–50 °C using a modified Winkler titration, volumetric analysis, and a polarographic sensor. The solubility at room temperature and 1 atmosphere pressure was ca. 1 mg l–1, and the temperature coefficient 0.006 mg 1–1° C–1 . The data are nearly consistent with sea water solubility extrapolated to Dead Sea brine salinity.  相似文献   

16.
Filamentous algae in eutrophic carp ponds in South Bohemia (Central Europe) were studied from 1988 to 1990. High biomass (490 g DW m-2) was attained by Cladophora fracta (O. F. Müll. ex Vahl) Kütz. after two months of growth. This marked growth depleted inorganic carbon in the water, but did not decrease the concentration of tissue nutrients. Laboratory measurements of final pH indicate that all the filamentous algae studied, except for Tribonema, are very efficient HCO3 - users. An extremely high pH of 11.6 and oxygen concentration of 32 mg l-1 were measured in the algal mats. High pH resulted in CaCO3 precipitation, visible as white incrustations on algal filaments. The amount of precipitated CaCO3 reached 134 kg ha-1. After reaching peak biomass, 90% of the Cladophora decomposed over the next 95 days.The highest net photosynthetic rate in C. fracta was measured between pH range 8.5–10.0 and oxygen concentrations of 7–12 mg l-1. Optimum temperature for photosynthesis was between 17–22°C.  相似文献   

17.
Production of the indole alkaloids, ajmalicine or catharanthine, in cell suspension cultures of Catharanthus roseus was enhanced by cerium (CeO2 and CeCl3), yttrium (Y2O3) and neodymium (NdCl3). The yield of ajmalicine in these treated-cultures reached 51 mg l–1 (CeO2), 40 mg l–1 (CeCl3), 41 mg l–1 (Y2O3) and 49 mg l–1 (NdCl3) while catharanthine production reached to 36 mg l–1 (CeO2) and 31 mg l–1 (CeCl3). A major portion of increased alkaloids was released into medium in these treatments. But Sm2O3, SmCl3, La2O3, LaCl3, complex of chromium (III)-titanium (IV) and NaSeO4 treatments had little effect on alkaloid production of C. roseus cell cultures.  相似文献   

18.
Surface phytoplankton assemblages were studied in January/February 1999 in the Crozet Basin (43°50S–45°20S; 61°E–64°30E) between the northern Polar Zone and the Agulhas Front. Cell concentrations increased several fold northwards from the SubAntarctic Zone (SAZ) and reached peak numbers (average 2×106 cells l–l ) in the central and western Subtropical Zone (STZ). The most spectacular increase in cell numbers occurred at the Subtropical Front (STF) and was attributed to dinoflagellates and diatoms. Nanoflagellates and picoplankton were dominant in the entire area (average 2.8×105–1.6×106 cells l–l). In the SAZ they were followed by coccolithophorids, dinoflagellates and diatoms. In the STZ coccolithophorids were often outnumbered by dinoflagellates. Diatoms were dominated by Pseudonitzschia delicatissima and were generally the least abundant algae, but reached peak densities of 1.2–4×105 cells l–l at, and north of the STF. Coccolithophorids contained mainly Emiliania huxleyi, but in the SAZ and STF Gephyrocapsa oceanica was a co-dominant species. Dinoflagellates were dominated by nano-sized species of Gymnodinium, Gyrodinium and Prorocentrum. The numbers of dinoflagellate and coccolithophorid species increased considerably in the convergence zone (STZ), which suggests their in-situ development. Heterotrophic dinoflagellates and ciliates were mainly present in the subtropics. Cell carbon biomass was attributed chiefly to auto- and heterotrophic dinoflagellates (av. 23–72 g C l–l; 68–87%), showing their important contribution to the carbon flow. Variations in cell concentrations across the fronts and water masses, and the distribution of major species were most likely controlled by the combined effect of such factors as nutrient renewal in the convergence zone, availability of iron, increased water-column stability at fronts, and high horizontal gradients in surface-water temperature.  相似文献   

19.
Summary The production of L-asparaginase was investigated in Escherichia coli, growing under different conditions of aeration in a medium containing 2% or 6% corn steep. At both concentrations, excessive aeration decreased enzyme production. In the medium with 2% corn steep, L-asparaginase activity began to decline as soon as the oxygen absorption exceeded 0.22 mmol O2 l–1 min–1, and when the oxygen absorption rate was 1.26 mmol O2 l–1 min–1, enzyme activity reached only about 5% of maximum. In the medium with 6% corn steep, a decline of L-asperaginase activity did not appear until the oxygen absorption rate value exceeded 0.54 mmol O2 l–1 min–1, at the oxygen absorption rate of 1.26 mmol O2 l–1 min–1, the enzyme activity still reached about 50% of maximum.  相似文献   

20.
He  Z.H.  Qin  J.G.  Wang  Y.  Jiang  H.  Wen  Z. 《Hydrobiologia》2001,457(1-3):25-37
Moina mongolica, 1.0-1.4 mm long and 0.8 mm wide, is an Old World euryhaline species. This paper reviewed the recent advances on its autecology, reproductive biology, feeding ecology and perspective as live food for marine fish larviculture. Salinity tolerance of this species ranges from 0.4–1.4 to 65.2–75.4. Within 2–50 salinity, Moina mongolica can complete its life cycle through parthenogenesis. The optimum temperature is between 25 °C and 28 °C, while it tolerates high temperature between 34.4 °C and 36.0 °C and lower temperature between 3.2 °C and 5.4 °C. The non-toxic level of unionised ammonia (24 h LC50) for M. mongolica is <2.6 mg NH3–N l–1. Juvenile individuals filter 2.37 ml d–1 and feed 9.45×106 algal cells d–1, while mature individuals filter 9.45 ml d–1 and consume 4.94×106 algal cells d–1. At 28 °C, M. mongolica reaches sex maturity in 4 d and gives birth once a day afterward; females carry 7.3 eggs brood–1 and spawn 2.8 times during their lifetime. A variety of food can be used for M. mongolica culture including unicellular algae, yeast and manure, but the best feeding regime is the combination of Nannochloropsis oculata and horse manure. Moina mongolica reproduces parthenogenetically during most lifetime, but resting eggs can be induced at temperature (16 °C) combined with food density at 2000–5000 N. oculata ml–1. The tolerance to low dissolved oxygen (0.14–0.93 mg l–1) and high ammonia makes it suitable for mass production. Biochemical analyses showed that the content of eicospantanoic acid (20:53) in M. mongolica accounts for 12.7% of total fatty acids, which is higher than other live food such as Artemia nauplii and rotifers. This cladoceran has the characteristics of wide salinity adaptation, rapid reproduction and ease of mass culture. The review highlights its potential as live food for marine fish larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号