首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic subunit of cyclic AMP-dependent protein kinase stimulates the inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase. The stimulated inactivation of carboxylase is due to activation of carboxylase kinase by the catalytic subunit. Activation of carboxylase kinase activity is accompanied by the incorporation of 0.6 mol of phosphate per mole of carboxylase kinase. Addition of the regulatory subunit of cyclic AMP-dependent protein kinase prevents the activation of carboxylase kinase. Phosphorylation and activation of carboxylase kinase has no effect on the Km for ATP, but decreases the Km for acetyl-CoA carboxylase from 93 to 45 nm. Inactivation of carboxylase by the carboxylase kinase requires the presence of coenzyme A even when the activated carboxylase kinase is used. Acetyl-CoA carboxylase is not phosphorylated or inactivated by the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

2.
A Basu  S Subramanian  C SivaRaman 《Biochemistry》1982,21(18):4434-4437
p-Azidobenzoyl coenzyme A functions as a linear competitive inhibitor for (3S)-citryl-CoA in the citryl-CoA oxaloacetate-lyase reaction catalyzed by the Klebsiella aerogenes deacetylcitrate lyase complex (Ki = 80 microM; (3S)-citryl-CoA Km = 67 microM). Inactivation is irreversible on photolysis of p-azidobenzoyl-CoA in the presence of the deacetylcitrate lyase complex. Mg2+ is not required for the inactivation. Inactivation is blocked by (3S)-citryl-CoA in the presence of ethylenediaminetetraacetic acid. p-Azidobenzoyl-CoA has no effect on the acetyl-CoA:citrate CoA transferase activity of both the deacetylcitrate lyase complex and its isolated transferase subunit. The stoichiometry of the CoA ester binding has been investigated by the use of p-azido[14C]benzoyl-CoA as a photoaffinity reagent. The labeling is exclusively on the lyase beta subunit of the citrate lyase complex.  相似文献   

3.
A factor has been found in rat liver supernatant solution which inhibits acetyl-CoA carboxylase activity regardless of the presence or absence of Mg2+ and ATP. Inactivation of the enzyme has been demonstrated via radiochemical and spectrophotometric assay procedures. The inactivation of acetyl-CoA carboxylase is not attributable to either malonyl-CoA decarboxylase activity, to phosphorylation of the enzyme, or to action on substrates or cofactors of the reaction. The activity of the inhibitor is destroyed by heating to 70-80 degrees C for 5 min or by treatment with trypsin. Dialyzing the inhibitor for 24 h at 4 degrees C does not alter its activity in inhibiting acetyl-CoA carboxylase. Hence, it appears that the inhibitor is a regulatory protein that acts directly on acetyl-CoA carboxylase.  相似文献   

4.
The activation of pyruvate dehydrogenasea kinase activity by CoA esters has been further characterized. Half-maximal activation of kinase activity was achieved with about 1.0 microM acetyl-CoA after a 20-s preincubation in the presence of NADH. More than 80% of the acetyl-CoA was consumed during this period in acetylating sites in the pyruvate dehydrogenase complex as a result of the transacetylation reaction proceeding to equilibrium. At 1.0 microM acetyl-CoA, this resulted in more than a 4-fold higher level of CoA than residual acetyl-CoA. Activation of kinase activity could result either from acetylation of specific sites in the complex or tight binding of acetyl-CoA. Removal of CoA enhanced both acetylation and activation, suggesting acetylation mediates activation. For allosteric binding of acetyl-CoA to elicit activation, an activation constant, Ka, less than 50 nM would be required. To further distinguish between those mechanisms, the effects of other CoA esters as well as the reactivity of most of the effective CoA esters were characterized. Several short-chain CoA esters enhanced kinase activity including (in decreasing order of effectiveness) malonyl-CoA, acetoacetyl-CoA, propionyl-CoA, and methylmalonyl-CoA. Butyryl-CoA inhibited kinase activity as did high concentrations of long-chain acyl-CoAs. Inhibition by long-chain acyl-CoAs may result, in part, from detergent-like properties of those esters. Malonyl-CoA, propionyl-CoA, butyryl-CoA, and methylmalonyl-CoA, obtained with radiolabeled acyl groups, were shown to acylate sites in the complex. Propionyl-CoA and butyryl-CoA were tested, in competition with acetyl-CoA or pyruvate, as alternative substrates for acylation of sites in the complex and as competitive effectors of kinase activity. Propionyl-CoA alone rapidly acylated sites in the complex at low concentrations, and low concentrations of propionyl-CoA were effective in activating kinase activity although only a relatively small activation was observed. When an equivalent level (20 microM) of acetyl-CoA and propionyl-CoA was used, marked activation of kinase activity due to a dominant effect of acetyl-CoA was associated with acetylation of a major portion of sites in the complex and with a small portion undergoing acylation with propionyl-CoA. Those results were rapidly achieved in a manner independent of the order of addition of the two CoA esters. That indicates that tight slowly reversible binding of acetyl-CoA is not involved in kinase activation. High levels of propionyl-CoA greatly reduced acetylation by acetyl-CoA and nearly prevented activation of kinase activity by acetyl-CoA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
A transport system for coenzyme A in isolated rat heart mitochondria   总被引:2,自引:0,他引:2  
The ability of isolated rat heart mitochondria to take up coenzyme A (CoA) from the incubation medium was studied. Mitochondria accumulated CoA in a time- and concentration-dependent manner. The accumulation process occurred in two phases. Within the first 30 s of incubation, mitochondrial content of CoA increased, and this phase did not plateau in the concentration range studied. Following this initial increase, a second slower phase of CoA accumulation occurred which plateaued around 50 microM CoA. The initial phase was decreased significantly by ATP or by carboxyatractyloside. In contrast, the presence of ATP or carboxyatractyloside did not affect the second phase. Decreasing the temperature from 30 to 0 degrees C did not affect the initial phase, but the second phase was almost abolished. In the presence of metabolic inhibitors (either 2,4-dinitrophenol or a combination of rotenone and antimycin), the initial "binding" phase was not affected; but the second "uptake" phase was abolished. These results suggest that the first phase of mitochondrial CoA accumulation is probably CoA binding to adenine recognizing sites on the mitochondria while the second phase may represent a specific uptake process for CoA which, although not directly ATP-dependent, is energy-dependent.  相似文献   

6.
The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs 5.5 and 8.0. The rate of acetyl-CoA synthesis was independent of CoA concentrations between 20 microM and 1 mM; however, activity was inhibited 50% with 5 mM CoA. Methylcobalamin did not substitute for CH3I in acetyl-CoA synthesis; no acetyl-CoA or propionyl coenzyme A was detected when sodium acetate or CH3CH2I replaced CH3I in the assay mixture. CO could be replaced with CO2 and titanium(III) citrate. When CO2 and 14CO were present in the assay, the specific activity of the acetyl-CoA synthesized was 87% of the specific activity of 14CO, indicating that CO was preferentially incorporated into acetyl-CoA without prior oxidation to free CO2. Greater than 100 microM potassium cyanide was required to significantly inhibit acetyl-CoA synthesis, and 500 microM was required for 50% inhibition; in contrast, oxidation of CO by the CODH complex was inhibited 50% by approximately 10 microM potassium cyanide.  相似文献   

7.
Rat liver acetyl-CoA carboxylase activity was inhibited by the free as well as the CoA monothioester of beta, beta'-methyl-substituted hexadecanedioic acid (MEDICA 16) (Bar-Tana, J., Rose-Kahn, G. and Srebnik, M. (1985) J. Biol. Chem. 260, 8404-8410 (1985). (1) The CoA monothioester of MEDICA 16 served as a dead-end inhibitor with an apparent Ki of 2 microM and 58 microM for the biotin-carboxylated and noncarboxylated enzyme forms, respectively. MEDICA 16-CoA binding was not mutually exclusive with that of citrate and did not affect the avidin-resistance of rat liver acetyl-CoA carboxylase. (2) The free dioic acid of MEDICA 16 was competitive to citrate, having an apparent Ki of about 70 microM, as compared to a Ka of 2-8 mM for the citrate activator. Inhibition of the carboxylase by the free dioic acid of MEDICA 16 was accompanied by an increase in its avidin resistance. The resultant inhibition of acetyl-CoA carboxylase by MEDICA 16 and its CoA thioester, together with the previously reported citrate-competitive inhibition of ATP-citrate lyase by MEDICA 16, may account for the observed hypolipidemic effect of MEDICA 16 under dietary conditions where liver lipogenesis constitutes a major flux of liver lipid synthesis.  相似文献   

8.
Bovine mammary fatty acid synthetase was inhibited by approximately 50% by 40 microM methylmalonyl-CoA; this inhibition was competitive with respect to malonyl-CoA (apparent Ki = 11 microM). Similarly, 6.25 microM coenzyme A inhibited the synthetase by 35% and this inhibition was again competitive (apparent Ki = 1.7 microM). Apparent Km for malonyl-CoA was 29 microM. The short-chain dicarboxylic acids malonic, methylmalonic and ethylmalonic at high concentrations (160-320 microM) and ATP (5 mM) enhanced the synthetase activity by about 50% respectively; the activating effects of methylmalonic acid and ATP on the synthetase were additive. Methylmalonyl-CoA at 50 microM concentration inhibited the partially purified acetyl-CoA carboxylase uncompetitively by 10% and the propionyl-CoA carboxylase activity of the enzyme preparation competitively (apparent Ki = 21 microM) by 40%. Malonyl-CoA also inhibited the acetyl-CoA carboxylase activity competitively (apparent Ki = 7 microM) by 35% and the propionyl-CoA carboxylating activity of the preparation competitively (apparent Ki = 4 microM) by 82%. The possibility that methylmalonyl-CoA may be a causal factor in the aetiology of the low milk-fat syndrome in high yielding dairy cows is discussed.  相似文献   

9.
1. A constant molecular weight of 57000 was obtained by gel filtration of highly purified acetyl-CoA synthetase over a 1000-fold range of enzyme concentrations. The amino acid analysis is reported. 2. With native enzyme at 20 degrees C the relatively rapid reaction of four thiol residues with p-hydroxymercuribenzoate caused an immediate inhibition reversible by either CoA or mercaptoethanol. Other substrates did not protect against this rapid inhibition. 3. The much slower reaction of the remaining four thiol residues was independent of the concentration of the mercurial, first-order with respect to enzyme, and had a large energy of activation (+136kJ/mol), suggesting that a conformation change in the protein was rate-limiting. This slow phase of the reaction was accompanied by an irreversible inactivation of the enzyme. 4. The effects of substrates on this irreversible inactivation at pH7.0 in 5 mm-MgCl(2) indicated strong binding of ATP and pyrophosphate by the enzyme (concentrations for half-maximal effects, K((1/2)), were <30mum and <10mum respectively) and weaker binding of acetyl-CoA (K((1/2)) about 1 mm), AMP (K((1/2)) about 2mm) and acetate. In the presence of acetate, MgCl(2) and p-hydroxymercuribenzoate, titration of the enzyme with ATP revealed at least two ATP binding sites/mol. 5. The experiments suggest that reaction of the thiol residues with mercurial causes loss of enzymic activity by altering the structure of the enzyme, rather than that the thiol residues play a direct role in the catalysis.  相似文献   

10.
Carbon monoxide dehydrogenase (CODH) from Clostridium thermoaceticum plays a central role in the newly discovered acetyl-CoA pathway [Wood, H.G., Ragsdale, S.W., & Pezacka, E. (1986) FEMS Microbiol. Rev. 39, 345-362]. The enzyme catalyzes the formation of acetyl-CoA from methyl, carbonyl, and CoA groups, and it has specific binding sites for these moieties. In this study, we have determined the role of tryptophans at these subsites. N-Bromosuccinimide (NBS) oxidation of the exposed and reactive tryptophans (5 out of a total of approximately 20) of CODH at pH 5.5 results in the partial inactivation of the exchange reaction (approximately 50%) involving carbon monoxide and the carbonyl group of the acetyl-CoA. Also, about 70% of the acetyl-CoA synthesis was abolished as a result of NBS modification. The presence of CoA (10 microM) produced complete protection against the partial inhibition of the exchange activity and the overall synthesis of acetyl-CoA caused by NBS. Additionally, none of the exposed tryptophans of CODH was modified in the presence of CoA. Ligands such as the methyl or the carbonyl groups did not afford protection against these inactivations or the modification of the exposed tryptophans. A significant fraction of the accessible fluorescence of CODH was shielded in the presence of CoA against acrylamide quenching. On the basis of these observations, it appears that certain tryptophans are involved at or near the CoA binding site of CODH.  相似文献   

11.
An acyl coenzyme A (CoA) carboxylase, which catalyzes the adenosine triphosphate-dependent fixation of CO2 into acetyl-, propionyl-, and butyryl-CoA, was detected in fractionated cell extracts of Propionibacterium shermanii. Catalytic activity was inhibited by avidin but was unaffected by avidin pretreated with excess biotin. The carboxylase levels detected were relatively small and were related to cellular growth. Maximal carboxylase activity was detected in cells grown for about 96 h. Thereafter, the activity declined rapidly. Optimal CO2 fixation occurred at pH 7.5. Other parameters of the assay system were optimized, and the apparent Km values for substrates were determined. The end product of the reaction (with acetyl-CoA as the substrate) was identified as malonyl-CoA. The stoichiometry of the reaction was such that, for every mole of acetyl-CoA and adenosine triphosphate consumed, 1 mol each of malonyl-CoA, adenosine diphosphate, and orthophosphate was formed. These data provide the first evidence for the presence of another biotin-containing enzyme, an acyl-CoA carboxylase, in these bacteria in addition to the well-characterized methylmalonyl-CoA carboxyltransferase.  相似文献   

12.
1. We have purified the AMP-activated protein kinase 4800-fold from rat liver. The acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA(HMG-CoA) reductase kinase activities copurify through all six purification steps and are inactivated with similar kinetics by treatment with the reactive ATP analogue fluorosulphonylbenzoyladenosine. 2. The final preparation contains several polypeptides detectable by SDS/polyacrylamide gel electrophoresis, but only one of these, with an apparent molecular mass of 63 kDa, is labelled using [14C]fluorosulphonylbenzoyladenosine. This is also the only polypeptide in the preparation that becomes significantly labelled during incubation with [gamma 32P]ATP. This autophosphorylation reaction did not affect the AMP-stimulated kinase activity. 3. In the absence of AMP the purified kinase has apparent Km values for ATP and acetyl-CoA carboxylase of 86 microM and 1.9 microM respectively. AMP increases the Vmax 3-5-fold without a significant change in the Km for either protein or ATP substrates. 4. The response to AMP depends on the ATP concentration in the assay, but at a near-physiological ATP concentration the half-maximal effect of AMP occurs at 14 microM. Studies with a range of nucleoside monophosphates and diphosphates, and AMP analogues showed that the allosteric activation by AMP was very specific. ADP gave a small stimulation at low concentrations but was inhibitory at high concentrations. 5. These results show that the AMP-activated protein kinase is the major HMG-CoA reductase kinase detectable in rat liver under our assay conditions and that it is therefore likely to be identical to previously described HMG-CoA reductase kinase(s) which are activated by adenine nucleotides and phosphorylation. The AMP-binding and catalytic domains of the kinase are located on a 63-kDa polypeptide which is subject to autophosphorylation.  相似文献   

13.
C Kemal  J E Casida 《Life sciences》1992,50(7):533-540
The CoA esters of diclofop, haloxyfop and fluazifop are up to 425-fold more potent than the corresponding unconjugated herbicides as inhibitors of rat liver acetyl-CoA carboxylase (EC 6.4.1.2); the most potent inhibitor is (R)-fluazifopyl-CoA2 (Ki = 0.03 microM). The binding site is stereoselective for (R)-diclofop, the herbicidally active enantiomer, and for (R)-diclofopyl-CoA. The CoA esters of the antiinflammatory drugs ibuprofen and fenoprofen also strongly inhibit this carboxylase. (S)-Ibuprofenyl-CoA (Ki = 0.7 microM), the CoA ester of the enantiomer with antiinflammatory activity, is 15-fold more potent as an inhibitor than (R)-ibuprofenyl-CoA. These results suggest that some of the biological effects of these herbicides and antiinflammatory drugs in animals may be due to the inhibition of acetyl-CoA carboxylase by their acyl-CoA derivatives.  相似文献   

14.
We have previously reported that the majority of the archaea utilize a novel pathway for coenzyme A biosynthesis (CoA). Bacteria/eukaryotes commonly use pantothenate synthetase and pantothenate kinase to convert pantoate to 4′-phosphopantothenate. However, in the hyperthermophilic archaeon Thermococcus kodakarensis, two novel enzymes specific to the archaea, pantoate kinase and phosphopantothenate synthetase, are responsible for this conversion. Here, we examined the enzymatic properties of the archaeal phosphopantothenate synthetase, which catalyzes the ATP-dependent condensation of 4-phosphopantoate and β-alanine. The activation energy of the phosphopantothenate synthetase reaction was 82.3?kJ?mol?1. In terms of substrate specificity toward nucleoside triphosphates, the enzyme displayed a strict preference for ATP. Among several amine substrates, activity was detected with β-alanine, but not with γ-aminobutyrate, glycine nor aspartate. The phosphopantothenate synthetase reaction followed Michaelis–Menten kinetics toward β-alanine, whereas substrate inhibition was observed with 4-phosphopantoate and ATP. Feedback inhibition by CoA/acetyl-CoA and product inhibition by 4′-phosphopantothenate were not observed. By contrast, the other archaeal enzyme pantoate kinase displayed product inhibition by 4-phosphopantoate in a non-competitive manner. Based on our results, we discuss the regulation of CoA biosynthesis in the archaea.  相似文献   

15.
The interaction of rat liver acetyl-CoA carboxylase with a 2',3'-dialdehyde derivative of ATP (oATP) has been studied. The degree of the enzyme inactivation has been found to depend on the oATP concentration and the incubation time. ATP was proved to be the only substrate which protected the inactivation. Acetyl-CoA did not effect inactivation, while HCO3- accelerated the process. Ki values for oATP in the absence and presence of HCO3- were 0.35 +/- 0.04 and 0.5 +/- 0.06 mM, and those of the modification constant (kmod) were 0.11 and 0.26 min-1 respectively. oATP completely inhibited the [14C]ADP in equilibrium ATP exchange and did not effect the [14C]acetyl-CoA in equilibrium malonyl-CoA exchange. Incorporation of approximately 1 equivalent of [3H]oATP per acetyl-CoA carboxylase subunit has been shown. No recovery of the modified enzyme activity has been observed in Tris or beta-mercaptoethanol containing buffers, and treatment with NaB3H4 has not led to 3H incorporation. The modification elimination of the ATP triphosphate chain. The results indicated the affinity modification of acetyl-CoA carboxylase by oATP. It was shown that the reagent apparently interacted selectively with the epsilon-amino group of lysine in the ATP-binding site to form a morpholine-like structure.  相似文献   

16.
Yeast (Saccharomyces cerevisiae) acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5'-tetraphosphate (P4A) and adenosine 5'-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4), with relative velocities of 7:1, respectively. Of 12 nucleotides tested as potential donors of nucleotidyl moiety, only ATP, adenosine-5'-O-[3-thiotriphosphate], and acetyl-AMP were substrates, with relative velocities of 100, 62, and 80, respectively. The Km values for ATP, P3, and acetyl-AMP were 0.16, 4.7, and 1.8 mM, respectively. The synthesis of p4A could proceed in the absence of exogenous acetate but was stimulated twofold by acetate, with an apparent Km value of 0.065 mM. CoA did not participate in the synthesis of p4A (p5A) and inhibited the reaction (50% inhibitory concentration of 0.015 mM). At pH 6.3, which was optimum for formation of p4A (p5A), the rate of acetyl-CoA synthesis (1.84 mumol mg-1 min-1) was 245 times faster than the rate of synthesis of p4A measured in the presence of acetate. The known formation of p4A (p5A) in yeast sporulation and the role of acetate may therefore be related to acetyl-CoA synthetase.  相似文献   

17.
Acetyl CoA carboxylase, in a partially purified preparation, was inactivated by ATP in a time- and temperature-dependent reaction. Adenosine 3′,5′-monophosphate did not affect the inactivation. Further purification separated the carboxylase from a protein fraction which could greatly enhance the inactivation of the enzyme.Inactivation of the enzyme with [γ-32P]ATP resulted in the incorporation of 32P which copurified with the enzyme. No label was incorporated when [U-14C]ATP was used. When carboxylase inactivated by exposure to [γ-32P]ATP was precipitated with antibody, isotope incorporation into the precipitate paralleled enzyme inactivation. The phosphate was bound to serine and threonine residues by an ester linkage.Sodium fluoride completely inhibited the activation of partially purified enzyme by magnesium ions. Activation by magnesium, accompanied by the release of protein-bound 32P, was antagonistic to inactivation of the enzyme by ATP.The data presented in this communication are consistent with a mechanism for controlling acetyl CoA carboxylase activity by interconversion between phosphorylated and dephosphorylated forms. Phosphorylation of the enzyme by a portein kinase decreases enzyme activity, whereas dephosphorylation by a protein phosphatase reactivates the enzyme.  相似文献   

18.
Regulation of pantothenate kinase by coenzyme A and its thioesters   总被引:17,自引:0,他引:17  
Pantothenate kinase catalyzes the rate-controlling step in the coenzyme A (CoA) biosynthetic pathway, and its activity is modulated by the size of the CoA pool. The effect of nonesterified CoA (CoASH) and CoA thioesters on the activity of pantothenate kinase was examined to determine which component of the CoA pool is the most effective regulator of the enzyme from Escherichia coli. CoASH was five times more potent than acetyl-CoA or other CoA thioesters as an inhibitor of pantothenate kinase activity in vitro. Inhibition by CoA thioesters was not due to their hydrolysis to CoASH. CoASH inhibition was competitive with respect to ATP, thus providing a mechanism to coordinate CoA production with the energy state of the cell. There were considerable differences in the size and composition of the CoA pool in cells grown on different carbon sources, and a carbon source shift experiment was used to test the inhibitory effect of the different CoA species in vivo. A shift from glucose to acetate as the carbon source resulted in an increase in the CoASH:acetyl-CoA ratio from 0.7 to 4.3. The alteration in the CoA pool composition was associated with the selective inhibition of pantothenate phosphorylation, consistent with CoASH being a more potent regulator of pantothenate kinase activity in vivo. These results demonstrate that CoA biosynthesis is regulated through feedback inhibition of pantothenate kinase primarily by the concentration of CoASH and secondarily by the size of the CoA thioester pool.  相似文献   

19.
Acetate kinase (ATP:acetate phosphotransferase, EC 2.7.2.1) from Escherichia coli exhibited a time-dependent loss of activity when incubated with N-ethylmaleimide at micromolar concentrations. However, prolonged incubation did not eliminate all catalytic activity and generally about 15% of its initial activity remained. When incubated with 7.2 microM N-ethylmaleimide, acetate kinase was inactivated with a rate constant of 0.063 min-1. Adenine nucleotides, ATP, ADP and AMP, protected the enzyme against such inactivation, but acetate up to 3.0 M and in the presence of 0.2 M MgCl2 and acetyl phosphate at 24 mM did not interfere with the rate of inactivation. While both acetate and acetyl phosphate did not affect the protection rendered by AMP, the presence of acetyl phosphate altered ADP protection. However, both substrates prevented ATP from protecting the enzyme. These data suggest that the binding sites for acetate and acetyl phosphate are different from that of the adenosine binding domain, but are in close vicinity to the phosphoryl binding regions of the nucleotides.  相似文献   

20.
1. In isolated rat adipocytes, acetyl-CoA carboxylase is inactivated by treatment of the cells with adrenaline or the beta-agonist isoproterenol, but not by the alpha-agonist phenylephrine. The inactivation is stable during purification in the presence of protein phosphatase inhibitors, and is associated with a 30-40% increase in the labelling of enzyme isolated from 32P-labelled cells. 2. Increased phosphorylation occurs within peptide T1, which was identified by sequencing to be the peptide Ser-Ser77-Met-Ser79-Gly-Leu-His-Leu-Val-Lys, containing Ser-77 (phosphorylated by cyclic-AMP-dependent protein kinase) and Ser-79 (phosphorylated by the AMP-activated protein kinase). Analysis of the release of radioactivity as free phosphate during Edman degradation of peptide T1 revealed that all of the phosphate was in Ser-79 in both basal and hormone- or agonist-stimulated cells. Treatment of adipocytes with various agents which activate cyclic-AMP-dependent protein kinase by receptor-independent mechanisms (forskolin, cyclic AMP analogues, isobutylmethylxanthine) also produced inactivation of acetyl-CoA carboxylase and increased phosphorylation at Ser-79. 3. The (Rp)-[thio]phosphate analogue of cyclic AMP, which is an antagonist of binding of cyclic AMP to the regulatory subunit of cyclic-AMP-dependent protein kinase, opposes the effect of adrenaline on phosphorylation and inactivation of acetyl-CoA carboxylase. Together with the effects of isobutylmethylxanthine and the stimulatory cyclic AMP analogues, this strongly indicates that cyclic-AMP-dependent protein kinase is an essential component of the signal transduction pathway, although clearly it does not directly phosphorylate acetyl-CoA carboxylase. 4. As shown by okadaic acid inhibition, greater than 95% of the acetyl-CoA carboxylase phosphatase activity in extracts of rat adipocytes or liver is accounted for by protein phosphatase-2A, with less than 5% attributable to protein phosphatase-1. Inhibition of protein phosphatase-1 via phosphorylation of inhibitor-1 is therefore unlikely to be the mechanism by which cyclic-AMP-dependent protein kinase indirectly increases phosphorylation of acetyl-CoA carboxylase. Various other potential mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号