首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Following our previously described Agrobacterium tumefaciens-mediated transformation procedure for Artemisia annua L., we have undertaken several additional experiments to establish the importance of some parameters such as explant type, age of explant source, A. tumefaciens strain and type of binary vector. Several binary vectors were useful for the production of transgenic callus on explants of different ages. In transformed calli, a good correlation between integration and expression of foreign DNA was observed: different assays showed expression of β-Glucuronidase, neomycin phosphotransferase II, superoxide dismutase and bleomycin acetyl transferase. The regeneration of transgenic plants required more restricted conditions. Only with the pTJK136 vector could transgenic plants be obtained from leaf and stem explants from 12- to 18-week-old plants. Co-cultivation for 48 h seemed favorable for the regeneration of transgenic plants. Stable integration and expression of the transgenes was also shown in the progeny. Received: 18 August 1997 / Revision received: 3 December 1997 / Accepted: 3 July 1998  相似文献   

2.
Effects of age and orientation of the explant on callus induction and de novo shoot regeneration from cotyledonary leaf segments of Jatropha curcas were studied. The callus induction and shoot regeneration capacity of cotyledonary leaf segments were found significantly related to the age of the explants and their orientation in culture medium. The youngest explant, derived from the cotyledonary leaf of germinated seed induced the highest regeneration response as compared to one- and two-week-old explants. A gradient response with age of the explant was observed in percentage of callus induction, shoot regeneration from callus and the number of shoots per regenerating callus. The explants cultured with their abaxial side in medium showed significantly higher regeneration response. The youngest explant was found to be most amenable to Agrobacterium-mediated transformation as compared to older explants. The fact that callus induced from the edges of the explant followed by de novo shoot induction, and strong transient gus expression observed in the edges of the explant are significant for routine Agrobacterium-mediated transformation and generation of stable transgenic plants in J. curcas.  相似文献   

3.
Shoot organogenesis and plant regeneration were readily achieved from cotyledonary petioles and hypocotyls of Brassica carinata. These explants were used for Agrobacterium-mediated transformation. A construct containing the selectable marker genes, neomycin phosphotransferase II, phosphinothricin acetyl transferase and the reporter gene β-glucuronidase, under the control of a tandem 35S promoter, was used for transformation. Although transformation was achieved with both cotyledonary petioles and hypocotyls, cotyledonary petioles responded best, with 30–50% of the explants producing GUS-positive shoots after selection on 25 mg/l kanamycin. Direct selection on L-phosphinothricin also produced resistant shoots but at a lower frequency (1–2%). Received: 9 April 1997 / Revision received: 3 July 1997 / Accepted: 30 July 1997  相似文献   

4.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

5.
A protocol avoiding the feeder-layer cell system was optimized for Agrobacterium-mediated transformation of tomato cotyledonary explants. Over 500 transgenic plants from five tomato cultivars were regenerated in 15 independent experiments. Depending on both genotype and procedure, transformation frequencies ranged from 1.8% to 11.3%. The optimal transformation rate was obtained by inoculating explants with a bacterial suspension in exponential growth ( D(600) = 10(2)-10(3) cells/ml) and transferring cotyledon explants to fresh selective regeneration medium every 3 weeks. The ploidy level of both tomato genotypes used as explant source and primary transformants, was studied by flow cytometry. The inbred lines and cultivars were diploid but a polysomatic pattern in the cotyledon explant was confirmed. The rate of tetraploid transgenic plants ranged from 24.5% to 80% and depended on both the genotype and the transformation procedure. Surprisingly, the percentages of transformed plants with higher ploidy levels were not related to the proportion of 4C and 8C nuclei in the cotyledonary tissue. For some genotypes the optimisation of the transformation rate resulted in an increase of tetraploid transgenic plants. Results obtained in this work indicate the convenience of checking the ploidy level of the primary transformants before performing basic studies or introducing tomato transgenic material in a breeding program.  相似文献   

6.
Melon (Cucumis melo L.) is widely considered as a recalcitrant species for genetic transformation. In this study, we developed different regeneration and transformation protocols and we examined the regeneration process at different steps by histological studies. The highest regeneration rate (1.13 ± 0.02 plants per explant) was obtained using cotyledon explants of the ‘Védrantais’ genotype on Murashige and Skoog (MS) medium supplemented with 0.2 mg/l 6-benzylaminopurine (BAP) and 0.2 mg/l dimethylallylaminopurine (2-iP). Agrobacterium tumefaciens-mediated transformations with the uidA reporter gene were realized on cotyledon explants cultivated in these conditions: 70–90% of explants expressed a transient GUS activity during the early stages of regeneration, however, only few transgenic plants were obtained (1.8–4.5% of stable transformation with the GV2260pBI101 strain). These results revealed a low capacity of melon GUS-positive cells to regenerate transgenic plants. To evaluate the influence of the Agrobacterium infection on plant regeneration, histological analyses were conducted on explants 2, 7, 15, and 28 days after co-culture with the GV2260pBI101 strain. Genetic transformation occurred in epidermal and sub-epidermal cells and reached the meristematic structures expressing a high level of GUS activity during 14 days of culture; but after this period, most of the meristematic structures showed premature cell vacuolization and disorganization. This disruption of the GUS-positive meristematic areas could be responsible of the difficulties encountered to regenerate melon plants after genetic transformation.  相似文献   

7.
Shoot buds were induced from plumular explants of peanut (Arachis hypogaea L., cv `Okrun') preconditioned on medium containing 2,4-dichlorophenoxyacetic acid and kinetin and then transferred to regeneration medium containing benzylaminopurine and β-naphthoxyacetic acid. Buds differentiated 25 days following transfer to regeneration medium. Each explant produced 30 to 40 buds, but only 4 shoots. The remaining buds were dormant and did not produce shoots when maintained on regeneration medium. Shoots were regenerated continuously, however, when explants were subsequently transferred to shoot conversion medium containing 1 μM brassin, benzylaminopurine and β-naphthoxyacetic acid, respectively. Approximately 5 shoots were harvested every 30 days after transfer to shoot conversion medium for up to 7 months. No further shoot production was observed from explants maintained on regeneration medium without brassin. Regenerated shoots could be rooted and produced viable seeds. This procedure provides an efficient and reliable system for regeneration and transformation studies using cv `Okrun'. Received: 9 April 1997 / Revision received: 27 August 1997 / Accepted: 20 September 1997  相似文献   

8.
The first transgenic peppermint (Mentha×piperita L. cultivar Black Mitcham) plants have been obtained by Agrobacterium-mediated transformation by cocultivation with morphogenically responsive leaf explants. Basal leaf explants with petioles, from leaves closest to the apex of in-vitro-culture-maintained shoots (5 cm), exhibited optimal shoot organogenetic responsiveness on medium supplemented with thidiazuron (8.4 μm). Shoot formation occurred at sites of excision on the leaf blade and petiole either directly from cells of the explant or via a primary callus. Analyses of transient GUS activity data indicated that DNA delivery by microprojectile bombardment was more effective than Agrobacterium infection. However, no transgenic plants were obtained from over 22,000 leaf explants after particle bombardment. Cocultivation of leaf explants with Agrobacterium strain EHA 105 and kanamycin selection produced transgenic plants. Greater transient and stable -glucuronidase (GUS) activities were detected in explants or propagules transformed with the construct where gusA was driven by the pBISN1 promoter rather than a CaMV 35S promoter. Eight plants were subsequently regenerated and verified as transgenic based on detection of the nptII transgene by PCR and Southern blot analyses. The Southern analyses indicated that the plants were derived from eight unique transformation events. All transgenic plants appeared morphologically normal. Analyses of GUS activities in leaves sampled from different portions of these transgenic plants, 10 months after transfer to the greenhouse, indicated that six out of the eight original regenerants were uniformly transformed, i.e., did not exhibit chimeric sectors. Received: 12 December 1997 / Revision received: 3 June 1997 / Accepted: 18 July 1997  相似文献   

9.
We have previously developed procedures for the efficient production of sweet orange (Citrus sinensis L. Osbeck) and Carrizo citrange (C. sinensis L. Osbeck×Poncirus trifoliata L. Raf.) transgenic plants using an Agrobacterium tumefaciens-mediated transformation and shoot tip grafting in vitro regeneration system. We now report on the optimization of the cocultivation, regeneration and selection conditions for efficient and reliable production of transgenic lime (C. aurantifolia Swing.) plants. Improved transformation frequencies were obtained by cocultivating the explants with Agrobacterium on feeder plates. Optimum regeneration of transgenic shoots was obtained by exposing the explants to darkness for 2 weeks and by using kanamycin at 100 mg/l as selective agent. Attempts to use geneticin as selection antibiotic were not successful. Shoot tip grafting of regenerated shoots on Troyer citrange seedlings resulted in 100% successful production of transgenic plants. The presence and expression of the transferred genes in the regenerated plants was verified by β-glucuronidase histochemical and fluorimetric assays, neomycin phosphotransferase ELISA assays, PCR and Southern analyses. Received: 10 December 1996 / Revision received: 10 February 1997 / Accepted: 25 February 1997  相似文献   

10.
 A procedure for producing transgenic Chinese cabbage plants by inoculating cotyledonary explants with Agrobacterium tumefaciens strain EHA101 carrying a binary vector pIG121Hm, which contains kanamycin-resistance and hygromycin-resistance genes and the GUS reporter gene, is described. Infection was most effective (highest infection frequency) when explants were infected with Agrobacterium for 15 min and co-cultivated for 3 days in co-cultivation medium at pH 5.2 supplemented with 10 mg/l acetosyringone. Transgenic plants of all three cultivars used were obtained with frequencies of 1.6–2.7% when the explants were regenerated in shoot regeneration medium solidified with 1.6% agar. A histochemical GUS assay and PCR and Southern blot analyses confirmed that transformation had occurred. Genetic analysis of T1 progeny showed that the transgenes were inherited in a Mendelian fashion. Received: 15 December 1998 / Revision received: 2 July 1999 · Accepted: 8 July 1999  相似文献   

11.
Procedures for callus induction, plantlet regeneration, andAgrobacterium-mediated transformation ofBrassica juncea were optimized by studying several factors, including explant types, and various plant growth regulators and adjuvants, such as silver nitrate, sucrose and agar. The highest shoot regeneration frequency was obtained from hypocotyl and cotyledonary petiole explants on MS medium containing 3 mg/L benzylaminopurine (BA) and 2 mg/L α-naphthaleneacetic acid (NAA). Transformation was affected by a number of factors, including explant type, selection agents, preculture duration, pre-selection conditions, and coculture temperature. Transformation efficiencies for hypocotyl and cotyledonary petiole explants were at 65% and 69%, respectively.  相似文献   

12.
Regeneration efficiency from three different regions of cotyledonary explants was examined in six sunflower inbred lines. Proximal, middle and distal regions from seedling cotyledons were cultured on regeneration medium supplemented with growth regulators. Plant regeneration by direct organogenesis was observed after four weeks. Significant differences among inbred lines were found for regeneration percentage and average number of shoots per total explants. Also a decreasing regeneration capacity was observed from proximal to distal sections for all inbred lines. Regeneration ability from cotyledonary explants in this species is strongly influenced by the genotype and by the region from which the explant was obtained. The distance to the cotyledonary node plays a preponderant role in the expression of shoot forming capacity. Shoot differentiation via seedling cotyledons depends upon the presence of the proximal region of cotyledon regardless of the genotype.  相似文献   

13.
 Short-season adapted soybean [Glycine max (L.) Merrill] genotypes (maturity group 0 and 00) were susceptible to Agrobacterium tumefaciens in tumor-formation assays with A. tumefaciens strains A281, C58 and ACH5. The response was bacterial-strain and plant-cultivar dependent. In vitro Agrobacterium-mediated transformation of cotyledonary node explants of these genotypes with A. tumefaciens EHA105/pBI121 was inefficient but resulted in a transgenic AC Colibri plant carrying a linked insertion of the neomycin phosphotransferase and β-glucuronidase (gus) transgenes. The transgenes were transmitted to the progeny and stable gus expression was detected in the T7 generation. The low rate of recovery of transgenic plants from the co-cultured cotyledonary explants was attributed to inefficient transformation of regenerable cells, and/or poor selection or survival of such cells and not to poor susceptibility to Agrobacterium, since, depending on the cultivar, explants were transformed at a rate of 27–92%, but transformation events were usually restricted to non-regenerable callus. Received: 8 January 1998 / Revision received: 30 June 1999 / Accepted: 12 July 1999  相似文献   

14.
Efficiency of plants' transformation depends on many factors. The genotype, applied techniques and conditions of plant's modification and modified plant regeneration are the most important among them. In our studies regeneration and transformation conditions for two strawberry cultivars were determined and compared. Plants were transformed by Agrobacterium tumefaciens LBA4404 strain containing plasmid pBIN19 with nptII and gus-reporter genes. Experiment was carried out on more than 1300 leaf explants from each cultivar. Generally, `Induka' plants characterized with higher regeneration potential than `Elista'. The highest number of regenerated shoots was obtained on MS medium with 0.4 mg l –1 IBA and 1.8 mg l–1 BA (3.5 and 1.8 shoots/explant for `Induka' and `Elista', respectively). After plant transformation number of regenerated, transgenic shoots was higher for `Elista' (on the average: 8.3 shoots/100 explants). The number of transgenic `Induka' shoots, obtained at the same conditions, was twice lower (4.2). Simultaneously `Induka' plants needed higher kanamycin concentration for transgenic explants selection than `Elista' (25 mg l–1). Preliminary incubation of A. tumefaciens in LB or MS medium with acetosyringone and IAA resulted in increasing transgenic shoots number (per 100 explants: `Induka' 4.5, `Elista' 8.0–9.5 shoots). After using untreated bacteria for plants' transformation, number of transgenic plants varied (dependently on cultivar) from 3.8 to 7.0/100 explants. Applying LB or MS as basic medium as well as adding tobacco plant extract to these media did not significantly influence transformation efficiency.  相似文献   

15.
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.  相似文献   

16.
Summary Prolific shoot regeneration was achieved in mungbean Vigna radiata (L.) Wilczek from 3-d-old in vitro cotyledonary node and hypocotyl explants from seedlings derived from mature seeds on Murashige and Skoog (MS) medium supplemented with thidiazuron (TDZ) (0.9 μM). An initial exposure to TDZ for 20 d and three successive transfers to fresh medium with reduced thidiazuron levels (0.09 μM) resulted in the regeneration of 104 shoots/explant from the cotyledon and 30 shoots/explant from the hypocotyl. Thidiazuron-associated abnormalities such as short compact shoots, fasciation and leaf growth in the form of rosettes were observed in shoots regenerated from hypocotyl explants. Both axillary and adventitious shoot formation from the explants were confirmed by histology. Through repectitive cycles of regeneration in the presence of TDZ, the number of shoots that could be obtained from the two explant classes within 80 d was significantly higher than with previous reports in mungbean  相似文献   

17.
A reliable and efficient protocol for the regeneration of fertile plants derived from leaf base segments of young in-vitro-grown oat seedlings has been developed successfully. Callus induction and shoot regeneration were achieved when the basal region of young seedlings was cultured on auxin-containing medium. Callus induction efficiencies as well as regeneration frequencies were correlated with the developmental stage and the genotype of the explants. In five different genotypes of oat, an average of 25 plants per explant could be produced and for the most responsive genotype more than 50 regenerants per explant could be regenerated reproducibly. This high regeneration potential makes oat leaf bases a very attractive target for transformation. Received: 6 May 1997 / Revision received: 10 August 1997 / Accepted: 15 September 1997  相似文献   

18.

High efficient and repeatable in vitro regeneration protocol was established from embryo axis, half-seed, axillary meristem, and cotyledonary node explants of chickpea. Various concentrations and combinations of various plant growth regulators (PGRs) were employed to induce multiple shoots, shoot elongation and rooting of shoots to obtain complete plantlets of chickpea. The pretreatment of seeds with 6-benzyl aminopurine (BAP) at 1.0 mg l?1 was found to significantly increase the multiple shoot regeneration from the all explants tested. Among three PGRs such as BAP, kinetin (KIN) and thidiazuron (TDZ) tested for multiple shoot induction; BAP at 2.0 mg l?1 produced the maximum number of shoots in all tested explants. The maximum number of shoots (48.80 shoots/explant) was attained from the embryo axis explant followed by half-seed (32.76 shoots/explant), axillary meristem (28.34 shoots/explant) and cotyledonary node explant (18.47 shoots/explant) on medium augmented with 2.0 mg l?1 BAP along with 0.05 mg l?1 Indole-3-butyric acid (IBA). The optimum percentage of shoot elongation response was recorded (96.68%) on medium fortified with IAA (0.05 mg l?1), GA3 (1.0 mg l?1) and BAP (1.0 mg l?1) with an average shoot length of 8.82 cm. The elongated shoots were successfully rooted in medium augmented with 2.0 mg l?1 IBA. The complete plants were acclimatized in the greenhouse with a survival rate of 72%. The plantlets regenerated from four explants appeared to be morphologically similar to mother plants. The genetic fidelity of in vitro regenerated plants was evaluated using Start Codon Targeted and Inter simple sequence repeats molecular markers. The in vitro regenerated plants from all four explants were found to be the true to type with their mother plant. The in vitro protocol presented in the study should offer as a feasible system for chickpea genetic transformation.

  相似文献   

19.
Though peanut tissue culture has advanced to a considerable extent using a number of explants with the subsequent production of transgenic plants, wild Arachis species appeared to be recalcitrant to using similar explants. In this study, the use of cotyledonary nodes as explants prepared from 7-day old seedlings resulted in the development of a simple and rapid regeneration protocol for five diploid wild species including A. diogoi, A. stenosperma, A. duranensis, A. cardenasii and A. correntina belonging to the genus Arachis for producing multiple shoots. Shoot bud initiation was observed 10 to 15 days after culture initiation. Responding cotyledonary nodes with shoot buds were subcultured to lower levels of cytokinin and finally to MS basal medium for further shoot development and elongation. Production of multiple shoots was observed in all the five diploid species with a maximum of 9 to 16 shoots were obtained per explant in the primary cultures. The number of shoot buds increased significantly with repeated explant subculturing with recovery up to 45 shoots from responding explants. These shoots were rooted efficiently on MS medium supplemented with 1 mg l−1 naphthalene acetic acid and the time taken from explanting to the transfer of shoots to potting mixture was about 12 weeks. All rooted shoots were successfully established in soil in glass house and further transferred to field. These plants survived to maturity and set seed.  相似文献   

20.
A simple and efficient plantlet regeneration protocol via direct organogenesis was established for camphor tree (Cinnamomum camphora L.). Stem segments with one node (SN explants) from embryo-cultured seedlings (EC seedlings) were used as explants. Murashige and Skoog (MS) medium supplemented with 0.5 mg/L 2, 4-dichlorophenoxyacetic acid and 2.0 mg/L 6-benzyladenine was used to induce cotyledonary embryo germination. This medium was also used for EC seedlings propagation and adventitious bud induction from SN explants. Regenerated plantlets were cultured on hormone-free MS medium for elongation and root induction. The regeneration capability of SN explants was compared by using EC seedling lines established in this research. EC seedling line EL6 exhibited the highest adventitious bud induction frequency (91.7%) and the highest number of buds per responding explant (5.2), which was considered as the most efficient EC seedling line for further gene transformation research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号