首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.  相似文献   

3.
TGF-beta signaling: a tale of two responses   总被引:10,自引:0,他引:10  
  相似文献   

4.
5.
6.
Wnt proteins are expressed during limb morphogenesis, yet their role and mechanism of action remains unclear during long bone growth. Wnt expression, effects and modulation of signaling events by BMP and transforming growth factor-beta (TGF-beta) were evaluated in chick embryonic chondrocytes. Chondrocyte cell cultures underwent spontaneous maturation with increased expression of colX and this was associated with an increase in the expression of multiple Wnts, including Wnt 4, 5a, 8c, and 9a. Both parathyroid hormone related peptide (PTHrP) and TGF-beta inhibited colX, but had disparate effects on Wnt expression. While TGF-beta strongly inhibited all Wnts, PTHrP did not inhibit either Wnt8c or Wnt9a and had lesser effects on the expression of the other Wnts. BMP-2 induced colX expression, and also markedly increased Wnt8c expression. Overexpression of beta-catenin and/or T cell factor (TCF)-4 also induced the type X collagen promoter. Overexpression of Wnt8c induced maturation, as did overexpression of beta-catenin. The Wnt8c/beta-catenin maturational effects were enhanced by BMP-2 and inhibited by TGF-beta. TGF-beta also inhibited activation of the Topflash reporter by beta-catenin, suggesting a direct inhibitory effect since the Topflash reporter contains only beta-catenin binding sequences. In turn beta-catenin inhibited activation of the p3TP-Luc reporter by TGF-beta, although the effect was partial. Thus, Wnt/beta-catenin signaling is a critical regulator of the rate of chondrocyte differentiation. Moreover, this pathway is modulated by members of the TGF-beta family and demonstrates the highly integrated nature of signals controlling endochondral ossification.  相似文献   

7.
Transforming growth factor-beta1 (TGF-beta1) action is known to be initiated by its binding to multiple cell surface receptors containing serine/threonine kinase domains that act to stimulate a cascade of signaling events in a variety of cell types. We have previously shown that TGF-beta1 and BMP-2 treatment of primary human osteoblasts (HOBs) enhances cell-substrate adhesion. In this report, we demonstrate that TGF-beta1 elicits a rapid, transient, and oscillatory rise in the intracellular Ca(2+) concentration, [Ca(2+)](i), that is necessary for enhancement of cell adhesion in HOBs but does not alter the phosphorylation state of Smad proteins. This rise in [Ca(2+)](i) in HOB is not observed in the absence of extracellular calcium or when the cells are treated with the L-type Ca(2+) channel blocker, nifedipine, but is stimulated upon treatment with the L-type Ca(2+) channel agonist, Bay K 8644, or under high K(+) conditions. The rise in [Ca(2+)](i) is severely attenuated after treatment of the cells with thapsigargin, a selective endoplasmic reticulum Ca(2+) pump inhibitor. TGF-beta1 enhancement of HOB adhesion to tissue culture polystyrene is also inhibited in cells treated with nifedipine. These data suggest that intracellular Ca(2+) signaling is an important second messenger of the TGF-beta1 signal transduction pathway in osteoblast function.  相似文献   

8.
9.
10.
The present study evaluated endogenous activities and the role of BMP and transforming growth factor-β (TGF-β), representative members of the TGF-β family, during myotube differentiation in C2C12 cells. Smad phosphorylation at the C-terminal serines was monitored, since TGF-β family members signal via the phosphorylation of Smads in a ligand-dependent manner. Expression of phosphorylated Smad1/5/8, which is an indicator of BMP activity, was higher before differentiation, and rapidly decreased after differentiation stimulation. Differentiation-related changes were consistent with those in the expression of Ids, well-known BMP-responsive genes. Treatment with inhibitors of BMP type I receptors or noggin in C2C12 myoblasts down-regulated the expression of myogenic regulatory factors, such as Myf5 and MyoD, leading to impaired myotube formation. Addition of BMP-2 during the myoblast phase also inhibited myotube differentiation through the down-regulation of Myf5 and MyoD. In contrast to endogenous BMP activity, the phosphorylation of Smad2, a TGF-β-responsive Smad, was higher 8-16 days after differentiation stimulation. A-83-01, an inhibitor of TGF-β type I receptor, increased the expression of Myf5 and MyoD, and enhanced myotube formation. The present results reveal that endogenous activities of the TGF-β family are changed during myogenesis in a pathway-specific manner, and that the activities are required for myogenesis.  相似文献   

11.
Activated pancreatic stellate cells (PSCs) play a pivotal role in the pathogenesis of pancreatic fibrosis, but the detailed mechanism for dysregulated accumulation of extracellular matrix (ECM) remains unclear. Cultured rat PSCs become activated by profibrogenic mediators, but these mediators failed to alter the expression levels of matrix metalloproteinases (MMPs) to the endogenous tissue inhibitors of metalloproteinases (TIMPs). Here, we examined the expression of RECK, a novel membrane-anchored MMP inhibitor, in PSCs. Although RECK mRNA levels were largely unchanged, RECK protein expression was barely detected at 2, 5 days after plating PSCs, but appeared following continued in vitro culture and cell passage which result in PSC activation. When PSCs at 5 days after plating (PSCs-5d) were treated with pepstatin A, an aspartic protease inhibitor, or TGF-beta1, a profibrogenic mediator, RECK protein was detected in whole cell lysates. Conversely, Smad7 overexpression or suppression of Smad3 expression in PSCs after passage 2 (PSCs-P2) led to the loss of RECK protein expression. These findings suggest that RECK is post-translationally processed in pre-activated PSCs but protected from proteolytic degradation by TGF-beta signaling. Furthermore, collagenolytic activity of PSCs-5d was greatly reduced by TGF-beta1, whereas that of PSCs-P2 was increased by anti-RECK antibody. Increased RECK levels were also observed in cerulein-induced acute pancreatitis. Therefore, our results suggest for the first time proteolytic processing of RECK as a mechanism regulating RECK activity, and demonstrate that TGF-beta signaling in activated PSCs may promote ECM accumulation via a mechanism that preserves the protease inhibitory activity of RECK.  相似文献   

12.
This article focuses on recent findings that the type V TGF-beta receptor (TbetaR-V), which co-expresses with other TGF-beta receptors (TbetaR-I, TbetaR-II, and TbetaR-III) in all normal cell types studied, is involved in growth inhibition by IGFBP-3 and TGF-beta and that TGF-beta activity is regulated by two distinct endocytic pathways (clathrin- and caveolar/lipid-raft-mediated). TGF-beta is a potent growth inhibitor for most cell types, including epithelial and endothelial cells. The signaling by which TGF-beta controls cell proliferation is not well understood. Many lines of evidence indicate that other signaling pathways, in addition to the prominent TbetaR-I/TbetaR-II/Smad2/3/4 signaling cascade, are required for mediating TGF-beta-induced growth inhibition. Recent studies revealed that TbetaR-V, which is identical to LRP-1, mediates IGF-independent growth inhibition by IGFBP-3 and mediates TGF-beta-induced growth inhibition in concert with TbetaR-I and TbetaR-II. In addition, IRS proteins and a Ser/Thr-specific protein phosphatase(s) are involved in the TbetaR-V-mediated growth inhibitory signaling cascade. The TbetaR-V signaling cascade appears to cross-talk with the TbetaR-I/TbetaR-II, insulin receptor (IR), IGF-I receptor (IGF-IR), integrin and c-Met signaling cascades. Attenuation or loss of the TbetaR-V signaling cascade may enable carcinoma cells to escape from TGF-beta growth control and may contribute to the aggressiveness and invasiveness of these cells via promoting epithelial-to-mesenchymal transdifferentiation (EMT). Finally, the ratio of TGF-beta binding to TbetaR-II and TbetaR-I is a signal controlling TGF-beta partitioning between two distinct endocytosis pathways and resultant TGF-beta responsiveness. These recent studies have provided new insights into the molecular mechanisms underlying TGF-beta-induced cellular growth inhibition, cross-talk between the TbetaR-V and other signaling cascades, the signal that controls TGF-beta responsiveness and the role of TbetaR-V in tumorigenesis.  相似文献   

13.
14.
TGF-β is a potent inducer of epithelial-to-mesenchymal transition (EMT), a process involved in tumour invasion. TIF1γ participates in TGF-β signalling. To understand the role of TIF1γ in TGF-β signalling and its requirement for EMT, we analysed the TGF-β1 response of human mammary epithelial cell lines. A strong EMT increase was observed in TIF1γ-silenced cells after TGF-β1 treatment, whereas Smad4 inactivation completely blocked this process. Accordingly, the functions of several TIF1γ target genes can be linked to EMT, as shown by microarray analysis. As a negative regulator of Smad4, TIF1γ could be crucial for the regulation of TGF-β signalling. Furthermore, TIF1γ binds to and represses the plasminogen activator inhibitor 1 promoter, demonstrating a direct role of TIF1γ in TGF-β-dependent gene expression. This study shows the molecular relationship between TIF1γ and Smad4 in TGF-β signalling and EMT.  相似文献   

15.
Transforming growth factor (TGF)‐β and activin, members of TGF‐β superfamily, are abundantly expressed in the endometrium and regulate decidualization of endometrial stroma. Smad2 and Smad3 are receptor‐regulated Smads (R‐Smads) that transduce extracellular TGF‐β/activin/Nodal signaling. In situ hybridization results showed that Smad3 was highly expressed in the decidual zone during the peri‐implantation period in mice. By using artificial decidualization, we found that Smad3 null mice showed partially compromised decidualization. We therefore hypothesized that Smad2 might compensate for the function of Smad3 during the process of decidualization. Smad2 was also highly expressed in the decidual zone and phosphorylated Smad2 was much more abundantly increased in the deciduoma of Smad3 null mice than for wild‐type (WT) mice. We further employed an in vitro uterine stromal cell decidualization model, and found that decidual prolactin‐related protein (dPRP) and cyclin D3, which are well‐known markers for decidual cells, were significantly down‐regulated in Smad3 null decidual cells, and were much more significantly reduced when the expression of Smad2 was simultaneously silenced by its siRNA (P < 0.05). However, the expression levels of dPRP and cyclin D3 remained the same when Smad2 was silenced in WT decidual cells. Collectively, these findings provide evidence for an important role of Smad3 in decidualization and suggest that Smad2 and Smad3 may have redundant roles in decidualization. J. Cell. Biochem. 113: 3266–3275, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
19.
VEGF and TGF-beta1 induce angiogenesis but have opposing effects on vascular endothelial cells: VEGF promotes survival; TGF-beta1 induces apoptosis. We have previously shown that TGF-beta1 induces endothelial cell apoptosis via up-regulation of VEGF expression and activation of signaling through VEGF receptor-2 (flk-1). In context with TGF-beta1, VEGF signaling is transiently converted from a survival into an apoptotic one. VEGF promotes cell survival in part via activation of PI3K/Akt by a mechanism dependent on the formation of a multi-protein complex that includes flk-1 and the adherens junction proteins VE-cadherin and beta-catenin. Here we report that TGF-beta1 induces rearrangement of the adherens junction complex by separating flk-1 from VE-cadherin and increasing beta-catenin association with both flk-1 and VE-cadherin. This rearrangement is caused neither by changes in adherens junction mRNA or protein expression nor by post-translational modification, and requires VEGF signaling through flk-1. These results show that the adherens junction is an important regulatory component of TGF-beta1-VEGF interaction in endothelial cells.  相似文献   

20.
The vascular wall is mainly composed of endothelial cells (ECs) and smooth muscle cells (SMCs). The crosstalking between these two cell types is critical in the vascular maturation process. Genetic studies suggest that the Tie2/angiopoietin 1 (Ang1) pathway regulates vascular remodeling. However, the molecular mechanism is unclear. PDGF is a potent chemoattractant for SMCs, and TGF-beta regulates SMC differentiation. Here, we examined gene regulation. PDGF-B stimulation upregulated Ang1 expression in SMCs through the PI3K and PKC pathways. PDGF-B stimulation also produced an acute induction of TGF-beta expression in SMCs through the MAPK/ERK pathway. Interestingly, TGF-beta negatively regulated Ang1 expression induced by the PDGF-B stimulation in SMCs. Reciprocally, we observed that stimulation of ECs with either Ang1 or TGF-beta slightly downregulated PDGF expression. A combination of both TGF-beta with Ang1 produced much stronger downregulation of PDGF. Our data showed complex gene regulations that include both positive and negative regulations between ECs and SMCs to maintain vascular homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号