首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Habitat loss is one of the greatest threats to species persistence. Gauging the scale of this problem requires quantitative methods that can predict the number of extinctions resulting from habitat loss. For the past three decades, the species–area relationship, an empirical relationship between the number of species present in an area and the size of that area, has been this tool. However, it fails to incorporate threats to species aside from habitat loss and the heterogeneous distribution of these threats across habitats. Recent studies have improved species–area predictions by incorporating not only direct effects of area on richness, but also indirect effects of area (through area‐mediated predator abundance), on prey species richness. We extend this work to test the hypotheses that the indirect effects of the multiple threats of grazing and trampling in addition to fragmentation will amplify the effect of area on species richness and that this effect will be greatest in zones closest to the fragment edge. Further, we test for species and population level effects of fragmentation and grazing, including the non‐random pattern of species loss and the decline in population sizes. We test our hypotheses with a field study of land snail richness in fragments with and without the additional threats of grazing and trampling. Our study supports the hypotheses that fragments with multiple threats in addition to habitat loss harbour fewer species than fragments without these threats, and that this effect is non‐uniform across fragments, populations and species.  相似文献   

5.
6.
7.
8.
Understanding how species diversity is related to sampling area and spatial scale is central to ecology and biogeography. Small islands and small sampling units support fewer species than larger ones. However, the factors influencing species richness may not be consistent across scales. Richness at local scales is primarily affected by small‐scale environmental factors, stochasticity and the richness at the island scale. Richness at whole‐island scale, however, is usually strongly related to island area, isolation and habitat diversity. Despite these contrasting drivers at local and island scales, island species–area relationships (SARs) are often constructed based on richness sampled at the local scale. Whether local scale samples adequately predict richness at the island scale and how local scale samples influence the island SAR remains poorly understood. We investigated the effects of different sampling scales on the SAR of trees on 60 small islands in the Raja Ampat archipelago (Indonesia) using standardised transects and a hierarchically nested sampling design. We compared species richness at different grain sizes ranging from single (sub)transects to whole islands and tested whether the shape of the SAR changed with sampling scale. We then determined the importance of island area, isolation, shape and habitat quality at each scale on species richness. We found strong support for scale dependency of the SAR. The SAR changed from exponential shape at local sampling scales to sigmoidal shape at the island scale indicating variation of species richness independent of area for small islands and hence the presence of a small‐island effect. Island area was the most important variable explaining species richness at all scales, but habitat quality was also important at local scales. We conclude that the SAR and drivers of species richness are influenced by sampling scale, and that the sampling design for assessing the island SARs therefore requires careful consideration.  相似文献   

9.
10.
Although species–area relationship (SAR ) is among the most extensively studied patterns in ecology, studies on aquatic and/or microbial systems are seriously underrepresented in the literature. We tested the algal SAR in lakes, pools and ponds of various sizes (10?2–108 m2) and similar hydromorphological and trophic characteristics using species‐specific data and functional groups. Besides the expectation that species richness increases monotonously with area, we found a right‐skewed hump‐shaped relationship between the area and phytoplankton species richness. Functional richness however did not show such distortion. Differences between the area dependence of species and functional richness indicate that functional redundancy is responsible for the unusual hump‐backed SAR . We demonstrated that the Small Island Effect, which is a characteristic for macroscopic SAR s can also be observed for the phytoplankton. Our results imply a so‐called large lake effect, which means that in case of large lakes, wind‐induced mixing acts strongly against the habitat diversity and development of phytoplankton patchiness and finally results in lower phytoplankton species richness in the pelagial. High functional redundancy of the groups that prefer small‐scale heterogeneity of the habitats is responsible for the unusual humpback relationship. The results lead us to conclude that although the mechanisms that regulate the richness of both microbial communities and communities of macroscopic organisms are similar, their importance can be different in micro‐ and macroscales.  相似文献   

11.
12.
13.
1. Species‐discharge relationships (SDR) are aquatic analogues of species‐area relationships, and are increasingly used in both basic research and conservation planning. SDR studies are often limited, however, by two shortcomings. First, they do not determine whether reported SDRs, which normally use complete drainage basins as sampling units, are scale dependent. Second, they do not account for the effects of habitat diversity within or among samples. 2. We addressed both problems by using discrete fish zones as sampling units in a SDR analysis. To do so, we first tested for longitudinal zonation in three rivers in the southeastern U.S.A. In each river, we detected successive ‘lower’, ‘middle’, and ‘upper’ fish zones, which were characterized by distinct fish assemblages with predictable habitat requirements. Because our analyses combined fish data from multiple sources, we also used rarefaction and Monte Carlo simulation to ensure that our zonation results were robust to spurious sampling effects. 3. Next, we estimated the average discharge within each zone, and plotted these estimates against the respective species richness within each zone (log10 data). This revealed a significant, linear SDR (r2 = 0.83; P < 0.01). Notably, this zonal SDR fit the empirical data better than a comparable SDR that did not discriminate among longitudinal zones. We therefore conclude that the southeastern fish SDR is scale dependent, and that accounting for within‐basin habitat diversity is an important step in explaining the high diversity of southeastern fishes. 4. We then discuss how our zonal SDR can be used to improve conservation planning. Specifically, we show how the slope of the SDR can be used to forecast potential extinction rates, and how the zonal data can be used to identify species of greatest concern.  相似文献   

14.
15.
The relationship between sampled area and the number of species within that area, the species–area relationship (SAR), is a major biodiversity pattern and one of a few law‐like regularities in ecology. While the SAR for isolated units (islands or continents) is assumed to result from the dynamics of species colonization, speciation and extinction, the SAR for contiguous areas in which smaller plots are nested within larger sample areas can be attributed to spatial patterns in the distribution of individuals. The nested SAR is typically triphasic in logarithmic space, so that it increases steeply at smaller scales, decelerates at intermediate scales and increases steeply again at continental scales. I will review current theory for this pattern, showing that all three phases of the SAR can be derived from simple geometric considerations. The increase of species richness with area in logarithmic space is generally determined by overall species rarity, so that the rarer the species are on average, the higher is the local slope z. Rarity is scale‐dependent: species occupy only a minor proportion of area at broad spatial scales, leading to upward accelerating shape of the SAR at continental scales. Similarly, species are represented by only a few individuals at fine spatial scales, leading to high SAR slope also at small areas. Geometric considerations reveal links of the SAR to other macroecological patterns, namely patterns of β‐diversity, the species–abundance distribution, and the relationship between energy availability (or productivity) and species richness. Knowledge of the regularities concerning nested SARs may be used for standardizing unequal areas, upscaling species richness and estimating species loss due to area loss, but all these applications have their limits, which also follow from the geometric considerations.  相似文献   

16.
Questions: Does grazing have the same effect on plant species richness at different spatial scales? Does the effect of spatial scale vary under different climatic conditions and vegetation types? Does the slope of the species‐area curve change with grazing intensity similarly under different climatic conditions and vegetation types? Location: Pastures along a climatic gradient in northeastern Spain. Methods: In zones under different regimes of sheep grazing (high‐, low‐pressure, abandonment), plant species richness was measured in different plot sizes (from 0.01 to 100 m2) and the slope of the species‐area curves was calculated. The study was replicated in five different locations along a climatic gradient from lowland semi‐arid rangelands to upland moist grasslands. Results: Species richness tended to increase with grazing intensity at all spatial scales in the moist upland locations. On the contrary, in the most arid locations, richness tended to decrease, or remain unchanged, with grazing due to increased bare soil. Grazing differentially affected the slope (z) of the species‐area curve (power function S=c Az) in different climatic conditions: z tended to increase with grazing in arid areas and decrease in moist‐upland ones. ß‐diversity followed similar pattern as z. Conclusions: Results confirm that the impact of grazing on plant species richness are spatial‐scale dependent. However, the effects on the species‐area relationship vary under different climatic conditions. This offers a novel insight on the patterns behind the different effects of grazing on diversity in moist vs. arid conditions reported in the literature. It is argued that the effect of spatial scale varies because of the different interaction between grazing and the intrinsic spatial structure of the vegetation. Variations in species‐area curves with grazing along moisture gradients suggest also a different balance of spatial components of diversity (i.e. a‐ and ß‐diversity).  相似文献   

17.
The spatial scale and density‐dependent effects of non‐native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence–absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments.  相似文献   

18.
The species–area relationship (SAR) is the oldest and most frequently documented law in ecology. In a community, the SAR is regulated by the abiotic environment and biotic interactions and depends on the individual–spatial distribution of species (ISD) and the species–abundance distribution (SAD). In this study, we explored the effects of aggregation of ISDs and unevenness of SADs on SARs in forests of China by comparing the empirical and simulated SARs of 32 nested plots distributed along an extensive latitudinal gradient. Both aggregation and unevenness affected the shape of SARs significantly: ISDs accounted for 12.6 ± 4.0% of the incremental increase in species richness with area, and SADs accounted for 18.7 ± 3.8 and 23.5 ± 3.9% under the broken‐stick model and even abundance model, respectively. Effects of both aggregation and unevenness decreased as temperature increased, suggesting that individuals of a species were spatially more aggregated than random, and the individuals among species were more discrepant from the null distribution (broken‐stick model and even abundance model in this study), in the cold than in the warm areas. Taken together, our results demonstrate that ISDs and SADs within communities can shape SARs, but these effects vary along latitudinal gradients, and are likely mediated by temperature.  相似文献   

19.
The biodiversity of insects within urban areas has been relatively little studied. Given the large and ever increasing extent of urban areas, and that the insect species richness there can be high, it is important to know the factors determining that aspect of biodiversity. In this study two of these factors, namely habitat management and area, were considered. Arboreal and grassland Hemiptera, and grassland plants, were sampled on 18 roundabouts and other road enclosed sites in the town of Bracknell. Hemiptera were sampled using suction sampling and tree beating. A significant species–area relationship was found for arboreal Hemiptera, which was strongly related to habitat diversity. For both grassland plants and Hemiptera, grassland management, by mowing, had a significant effect on species richness. Despite the management grassland plants showed a significant species–area relationship. However the effect of management on Hemiptera was great enough to outweigh any area effect. As the size of open spaces is often constrained in urban areas, altering habitat management has a greater potential for enhancing biodiversity. For arboreal Hemiptera choice of trees for planting is of particular importance, while for grassland Hemiptera diversity would be increased with a reduction in the intensity of management, such a reduction in the frequency of mowing.

Zusammenfassung

Die Biodiversität der Insekten auf urbanen Flächen ist relativ wenig untersucht. Angesichts der großen und der immer größer werdenden Ausdehnung urbaner Gebiete und angesichts dessen, dass der Artenreichtum der Insekten dort groß sein kann, ist es wichtig die Faktoren zu kennen, die diesen Aspekt der Biodiversität bestimmen. In dieser Untersuchung wurden zwei dieser Faktoren, nämlich Habitatmanagement und Fläche, betrachtet. Baum- und wiesenbewohnende Hemiptera sowie Wiesenpflanzen wurden in 18 Kreisverkehren und anderen straßenumschlossenen Orten innerhalb der Stadt Bracknell gesammelt. Die Hemiptera wurden mit Saugproben und Klopfproben an den Bäumen gesammelt. Für die baumbewohnenden Hemiptera wurde eine signifikante Art-Areal-Beziehung gefunden, die in enger Beziehung zur Habitatdiversität stand. Sowohl für die Wiesenpflanzen als auch für die Hemiptera hatte das Wiesenmanagement in Form von Mahd einen signifikanten Einfluss auf den Artenreichtum. Trotz des Managements zeigten die Wiesenpflanzen eine signifikante Art-Areal-Beziehung. Die Auswirkungen des Managements auf die Hemiptera waren jedoch groß genug, um den Arealeffekt zu überwiegen. Da die Größe offener Flächen in städtischen Gebieten oft beschränkt ist, hat die Änderung des Habitatmanagements ein größeres Potenzial die Biodiversität zu erhöhen. Für baumbewohnende Hemiptera ist die Auswahl der Bäume für die Bepflanzung von besonderer Wichtigkeit, während für die wiesenbewohnenden Hemiptera die Diversität durch eine Verringerung der Managementintensität erhöht würde, wie z. B. durch die Verringerung der Mahdfrequenz.  相似文献   

20.
This study investigates the species–area relationship (SAR) for forest monkeys in a biodiversity hotspot. The Udzungwa Mountains of Tanzania are well‐suited to investigate the SAR, with seven monkey species in a range of fragment sizes (0.06–526 km2). We test the relationship between species richness and forest fragment size, relative to human and environmental factors. We distinguish resident and transitory species because the latter have an “effective patch size” beyond the area of forest. Forest area was the strongest (log‐linear) predictor of species richness. However, forest area, elevation range and annual moisture index were intercorrelated. Previous knowledge of the relationship between elevation and tree communities suggests that the SAR is largely a result of habitat heterogeneity. Isolation by farmland (matrix habitat) also had a significant negative effect on species richness, probably exacerbated by hunting in small forests. The effect of area and isolation was less for transitory species. The human influence on species' presence/absence was negatively related to the extent of occurrence. Weaker relationships with temperature and precipitation suggest underlying climatic influences, and give some support for the influence of productivity. A reduced area relationship for smaller forests suggests that fragment sizes below 12–40 km2 may not be reliable for determining SAR in forest monkeys. Further practical implications are for management to encourage connectivity, and for future SAR research to consider residency, matrix classification and moisture besides precipitation. Am. J. Primatol. 72:325–336, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号