首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the study was to demonstrate spontaneous contractile activity of the smooth muscle coat of the aorta in human and animal material. Spontaneous contractility of smooth muscle tissue, or tonus, is essential for the proper function of many internal organs as observed in the many types of muscle cells which make up the internal structures. The spontaneous contractile activity of the muscle tissue in blood vessels is particularly marked in resistance vessels, regulating circulation within organs or tissues. It can also be observed in large blood vessels such as arteries and veins. The contractile activity of muscular tissue isolated from arteries is the result of a number of factors, including endogenous paracrine substances, neurotransmitters released at postganglionic endings (mostly within the sympathetic system), cells capable of spontaneously generation of functional potentials (pacemaking cells) and the vascular endothelium. Pacemaking cells present in the aortic wall are an important factor in the development of the spontaneous contractility of the muscular coat of the aorta. They are capable of generating functional potentials, resulting in the constant tonus of the smooth muscular coat (comprising the aortic wall) due to tonic contraction. In vitro studies were carried out on abdominal aortic sections collected from 30 New Zealand rabbits with a body mass of 3-4 kilograms each and also on aneurysmal abdominal aortic sections collected during elective aneurysm repair procedures in humans (10 abdominal aortic sections). The 1.5 cm-long sections were mounted in chambers of an automated water bath. The sections were oriented in a transverse and longitudal fashion in order to compare contractility. The incubation medium consisted of Krebs-Henseleit buffer. Spontaneous contractile activity was observed during the study, characterized by rhythmic contractions of the muscular layer of the aorta. The contractile tension within the sections was 0.15 mN in the case of rabbit sections and 0.8 mN in the case of human sections. The average duration of a single contraction was 38.3 +/- 15.05 seconds. The average contraction frequency, i.e. the average number of contractions per minute, was 1.61 +/- 0.54 contractions per minute. The spontaneous contraction is modulated by many factors like endogenous paracrine substances, neurotransmitters or vascular endothelium.  相似文献   

2.
The endothelins (ETs) comprise a family of 21 amino acid peptides, ET-1, ET-2 and ET-3, first demonstrated as products of vascular endothelium. Subsequent work showed that they are also found in non-endothelial cells from a variety of tissues such as breast, parathyroid and adrenal gland. At first, the ETs were recognized for their pressor effects. However, ET administration in vivo initially caused hypotension at low concentrations by triggering the paracrine release of endothelial-derived vasodilators. The ETs exert powerful contractile actions on myometrium and other types of smooth muscle and are mitogenic, or co-mitogenic for fibroblasts, vascular smooth muscle and other cells. Demonstration of extravascular ET in endometrium has revealed a powerful vasoconstrictor which might act on the spiral arterioles to effect a powerful and sustained contraction of vascular smooth muscle. ETs might also contribute to the process of endometrial repair. In addition, the ETs appear to play a fundamental role in the control of uterine function in pregnancy. Effects on myometrial contractility have been implicated in the mechanisms governing the onset of normal and pre-term labour, and the peptides are likely to be key determinants of placental blood flow by binding to vascular smooth muscle receptors in the placenta.  相似文献   

3.
Contractile elements in the regulation of macromolecular permeability   总被引:2,自引:0,他引:2  
The leakage of macromolecules from the vasculature to the interstitium is greatly accentuated by mediators of edema such as histamine and bradykinin. The mechanism for this effect is not well delineated although many agents that affect smooth muscle tone may also affect macromolecular leakage. Leakage occurs primarily from the small venules. The demonstration that mediators of edema produce interendothelial gaps in the venules as well as changes in the shape of the endothelial nuclei has led to the hypothesis that a contraction of a vascular wall component may be responsible for the observed leakage of macromolecules. This component does not appear to be the vascular smooth muscle itself. Two other elements of the vascular wall, the endothelium and the pericytes, have been shown to contain many of the same elements of the contractile machinery present in smooth muscle. Most recent studies have presumed that endothelial cell contraction is responsible for the formation of the interendothelial gaps through which the macromolecules move. However, endothelial contraction has been difficult to demonstrate experimentally. Alternatively, inasmuch as pericytic processes can end near endothelial junctions and there is an abundance of fibronectin between the pericytes and the endothelium, it may be a pericytic contraction that causes the interendothelial gap formation.  相似文献   

4.
Experimental studies relating to the direct peripheral vascular actions of neurohypophyseal hormones and their synthetic variants are reviewed. In addition, the available data on the comparative pharmacologic actions of these peptides on mammalian vascular smooth muscle are reviewed. Experiments relating to mechanisms by which neurohypophyseal peptides induce contraction of blood vessels are discussed. Neurohypophyseal peptide hormones appear to be able to contract and relax vascular smooth muscle, the exact type of response being dependent on species, vascular bed, and region within a vascular bed. Receptors that subserve both contraction and relaxation may exist on different blood vessels within a species, with a preponderance of receptors that subserve contraction being present in most blood vessels. Concentrations of vasopressin that can be considered physiologic (i.e., 10(-13) to 10(-11) M) are capable of evoking responses on a variety of microscopic as well as large blood vessels. Arginine-vasopressin appears to be, relatively, the most potent contractile substance on rat blood vessels investigated to date; angiotensin is not. Preservative-free oxytocin is a contractile agent on all mammalian arterial and arteriolar vessels so far investigated. A great deal of the controversy surrounding the exact vascular actions elicited by these peptide hormones can be attributed to many factors that were not controlled in older experiments. Moreover, rat pressor assays cannot be utilized to determine structure-activity relationship for neurohypophyseal peptides on vascular smooth muscles. Nuerohypophyseal peptide-induced contractions of vascular smooth muscles can be markedly affected by sex, sex hormones, alcohols, [Ca2+]0, [mg2+]0, oxygen deficit, and glucose-deprivation. Extracellular sodium and potassium ions appear to play relatively little role in vasopressin-induced contractions of rat arterial smooth muscle. The terminal amino group, phenolic hydroxyl, aromatic ring and basicity in positions 1, 2, 3, and 8, respectively, of the neurohypophyseal hormones are important for optimizing hormone-receptor affinity and intrinsic contractile activity on vascular smooth muscle. Basicity in position 8 of these peptide hormones is not an absolute requirement for contractile activation of these smooth muscles. Alterations in molecular structure can result in neurohypophyseal peptides with unique, and selective, microcirculatory effects that may be beneficial in the treatment of low-flow states.  相似文献   

5.
6.
Endothelium-derived factors modulate tone and may be involved in hyporeactivity to vasoconstrictors, such as norepinephrine or angiotensin II, as has been previously described during gestation. The endothelium produces endothelin-1, a major vasoconstrictor peptide, therefore aortic contractions to endothelin-1 (10(-10) to 3 x 10(-7) M) were used to assess the role of the endothelium in pregnant Wistar rats (at 20 days of gestation). Late pregnancy is characterized by a significantly diminished systolic blood pressure in conscious rats (-17 mmHg, P < 0.001, n = 14). In pregnant and in age-matched nonpregnant female rats, endothelin-1 induced aortic contraction was greater when endothelium was present (at least P < 0.01). Indomethacin significantly reduced this contraction in aortic rings with intact endothelium in all groups. In aortic rings that had endothelium physically removed, contraction to endothelin-1 was greater in pregnant rats than in nonpregnant ones. Indomethacin decreased contraction of aortic rings in pregnant rats only. These results suggest an enhanced synthesis of vasoconstrictors by cyclooxygenases in vascular smooth muscle during pregnancy. In vessels with intact endothelium, we did not find hyporeactivity to endothelin-1 during late pregnancy. Contraction to endothelin-1 involved ET(A) receptors because it was decreased by BQ-123, an ET(A) receptor antagonist, whereas there was no significant change when using BQ-788, an ET(B) receptor antagonist.  相似文献   

7.
Using various agonists, and the specific antagonist BQ-123, we have examined the sensitivity to endothelin of the vascular smooth muscle of the ventral aorta of the spiny dogfish shark, Squalus acanthias. Human endothelin-1 produced significant contraction of isolated vascular smooth muscle rings, with an EC50 of 10 nmol·1-1. The presence of an intact endothelium did not alter this response but the magnitude of the contraction was greater in rings with an intact endothelium. The response to 0.2 mol·1-1 endothelin-1 was equivalent to that of 0.1 mmol·1-1 acetylcholine, and significantly greater than that to 80 mmol·1-1 KCl, suggesting high sensitivity even to the heterologous, mammalian peptide. The Hill plot of the contractile response was a straight line with a slope of 1.12, indicating that a single receptor was mediating the response. Endothelin-1, endothelin-3, and sarafotoxin S6c produced similar concentration-response curves, and the response to endothelin-1 was insensitive to the ETA-specific inhibitor BQ-123. Our data are consistent with the hypothesis that the receptor involved in the contractile response to endothelin of shark aortic vascular smooth muscle is of the ETB-rather than the ETA-type.Abbreviations ACh acetylcholine - ANP atrial natriuretic peptide - CA celiacomesenterie artery - CRC concentration response curve - DMSO dimethylsulphoxide - ET endothelin - STX sarafotoxin - VSM vascular smooth muscle - EDCF endothelium derived contraction factor  相似文献   

8.
Three agents that activate guanylate cyclase, sodium nitroprusside, nitroglycerin and sodium axide, were examined for their effects on cyclic GMP and cyclic AMP accumulation and muscle motility with several tissues. All of these agents, except nitroglycerin with ventricle preparations, increased cyclic GMP levels and did not alter cyclic AMP in incubations of preparations of bovine tracheal smooth muscle, guinea pig tracheal chains, taenia cecum, atria and ventricle, and rat liver and cerebral cortex. Increases in cyclic GMP with these agents occurred with relaxation of smooth muscle preparations and without alteration in the contractility of atrial preparations. These observations support the hypothesis that cyclic GMP accumulation in smooth muscle may be related to relaxation rather than contraction as proposed previously. Relaxation with these agents is not associated with alterations in cyclic AMP levels. Increases in cyclic GMP levels in atrial preparations can also occur without changes in contractile force or rate of contraction.  相似文献   

9.
铁对血管收缩活动的影响及其机制   总被引:4,自引:2,他引:2  
Kuang W  Chen YY  Shen YL  Xia Q 《生理学报》2003,55(3):273-277
动脉粥样硬化的发生和铁引起的氧化应激密切相关。铁对血管的直接效应及其对血管收缩功能的影响尚不明确。本文采用血管环灌流装置 ,观察铁对离体SD大鼠去内皮胸主动脉环的直接效应 ,及对去内皮主动脉环KCl和苯肾上腺素 (PE)引发的收缩效应的影响。结果显示 :( 1) 10 0 μmol/L枸橼酸铁 (FAC)引起大鼠血管环发生相位性收缩 ,最大收缩幅度可达KCl诱发的最大收缩的 2 4 0 2± 2 3 7%。当 [Ca2 +]o 增加 1倍时 ,铁所致的血管环收缩幅度明显增加 (P <0 0 1)。阻断L 型钙通道后 ,铁所致的血管环收缩幅度明显降低 (P <0 0 1)。在无钙液中 ,用佛波酯收缩血管环 ,待收缩稳定后给予FAC ,此时收缩幅度增加 49 18± 3 75 %。 ( 2 )铁孵育 3 0min后 ,KCl引起血管环收缩的幅度显著降低 (P <0 0 1)。铁孵育可使PE引起的收缩量 -效曲线右移 (P <0 0 5 )。 ( 3 )二甲基亚砜、过氧化氢酶和谷胱甘肽可明显降低铁对PE血管收缩反应的抑制作用 (P <0 0 5 )。从这些结果可得到以下结论 :铁可引起胸主动脉发生相位性收缩 ,其机制可能与L 型钙通道短暂开放导致钙离子内流 ,及平滑肌对钙的敏感性增加有关 ;较长时间与铁孵育后 ,可对血管收缩功能产生损伤 ,氧自由基的生成增加和细胞内GSH的水平降低可能参与铁对收缩功能的  相似文献   

10.
11.
Cysteinyl leukotrienes (CysLTs) exert potent proinflammatory actions and contribute to many of the symptoms of asthma. Using a model of allergic sensitization and airway challenge with Aspergillus fumigatus (Af), we have found that Th2-type inflammation and airway hyperresponsiveness (AHR) to methacholine (MCh) were associated with increased LTD(4) responsiveness in mice. To explore the importance of increased CysLT signaling in airway smooth muscle function, we generated transgenic mice that overexpress the human CysLT1 receptor (hCysLT(1)R) via the alpha-actin promoter. These receptors were expressed abundantly and induced intracellular calcium mobilization in airway smooth muscle cells from transgenic mice. Force generation in tracheal ring preparations ex vivo and airway reactivity in vivo in response to LTD(4) were greatly amplified in hCysLT(1)R-overexpressing mice, indicating that the enhanced signaling induces coordinated functional changes of the intact airway smooth muscle. The increase of AHR imposed by overexpression of the hCysLT(1)R was greater in transgenic BALB/c mice than in transgenic B6 x SJL mice. In addition, sensitization- and challenge-induced increases in airway responsiveness were significantly greater in transgenic mice than that of nontransgenic mice compared with their respective nonsensitized controls. The amplified AHR in sensitized transgenic mice was not due to an enhanced airway inflammation and was not associated with similar enhancement in MCh responsiveness. These results indicate that a selective hCysLT(1)R-induced contractile mechanism synergizes with allergic AHR. We speculate that hCysLT(1)R signaling contributes to a hypercontractile state of the airway smooth muscle.  相似文献   

12.
The venom of V. cincta contains acetylcholine (ACh), histamine and 5-hydroxytryptamine (5-HT). Blockers of these agonists did not block completely the hypotensive and smooth muscle contractile activity of venom. On smooth muscle, there was a residual slow contraction. The active substance which produced this slow contraction was separated by solvent extraction, gel filtration and TLC. The purified material (which has been provisionally designated "Vecikinin") lowered cat, rat and guinea pig blood pressure, increased amplitude of cardiac contraction, and increased capillary permeability. Vecikinin contracted several smooth muscle preparations (rat uterus, rat ascending colon, guinea pig ileum, guinea pig colon and rat ileum), while relaxing rat duodenum. Its contractile activity was not lost on boiling, but acid or alkali-boiling reduced its contractile activity. It was inactivated on incubation with chymotrypsin and carboxypeptidase but not with trypsin, pepsin or leucine aminopeptidase. It is a peptide, appears to be of low molecular weight, and could be distinguished from substance P, angiotensin, bradykinin and hornet or wasp kinin.  相似文献   

13.
Reactive oxygen species alter pulmonary arterial vascular tone and cause changes in pulmonary vascular resistance. The objective of this investigation was to determine direct effects of oxygen radicals on the contractile properties of pulmonary arterial smooth muscle. Isolated pulmonary arterial rings from Sprague-Dawley rats were placed in tissue baths containing Earle's balanced salt solution (gassed with 95% O2 - 5% CO2, 37 degrees C, pH 7.4). Vessels were contracted with 80 mM KCl to establish maximum active force production (Po). All other responses were normalized as percentages of Po for comparative purposes. Reactive oxygen metabolites were generated enzymatically with either the xanthine oxidase (XO) reaction or the glucose oxidase (GO) reaction, or hydrogen peroxide (H2O2) was added directly to the muscle bath. Exposure to XO, GO, or to H2O2 resulted in a contractile response that was sustained during the 30-min exposure period. The muscle fully relaxed following removal of the reactive oxygen species. Resting tension remained unchanged throughout the experimental period, suggesting no functional change in membrane potential. The contractile response was dose dependent and was not prevented by either cyclooxygenase or lipoxygenase inhibition, or by removal of the endothelium. Pretreatment of vessels with superoxide dismutase (SOD) partially blocked the XO-induced contraction, while mannitol or deferoxamine had no effect on the response to XO. However, pretreatment with catalase (CAT) completely blocked the XO-induced contraction. These data suggest that superoxide ions and hydrogen peroxide are the major causative agents. Following O2-radical exposure, vessels showed a decrease in contractile responsiveness to 80 mM KCl (recovery response), suggesting damage to the smooth muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The functional state of rat's airway smooth muscle was not changed after nitrogen dioxide inhalation for 30 days. The smooth muscle contraction increased only at second stimulation of preganglionic nervous fibers. Removal of mucosa or Novocain blockade of receptors decreased control smooth contraction at nerve and muscle fiber stimulation but the repeated stimulation of nerve increased the muscle contraction. The processing of trachea and bronchus preparations by prednisolon (1-10 microg/ml) decreased muscle reactions to 12% only at nerve stimulation. Prednisolon didn't change reactions of preparations with removed or blockaded receptors induced by nerve stimulation, but prednisolon (10 microg/ml) increased contraction at muscle stimulation. The relax effect of prednisolon on airway smooth muscle realizes via tracheobronchial receptors. High doses of prednisolon may direct effect on muscle increasing its contraction.  相似文献   

15.
Characterization of nicotine-induced contraction in the canine bronchus   总被引:2,自引:0,他引:2  
1. The modes of action of nicotine on the dog bronchial smooth muscle preparation was investigated, in order to compare with those on the bronchial preparations from the guinea-pig, rabbit and monkey. 2. Nicotine induced a contraction in the dog bronchial preparation, and this response was abolished by hexamethonium and atropine and potentiated by physostigmine. 3. These findings suggest that the contractile response to nicotine was mediated through an action on the nicotinic receptors and due to the release of acetylcholine. 4. Tetrodotoxin did not inhibit the contractile response to nicotine in the dog bronchial preparation, suggesting that the nicotine-induced response may be produced mainly through a sodium action potential-independent process. 5. The present observations in the dog bronchial preparations coincided with those in the rabbit and monkey bronchi but not with the findings in the guinea-pig bronchus.  相似文献   

16.
We examined the direct effect of motilin on longitudinal and circular smooth muscle cells isolated from the guinea pig small intestine. In addition, the effects of 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8, an inhibitor of intracellular Ca(2+)-release), verapamil (a voltage-dependent Ca(2+)-channel blocker), and removal of extracellular Ca2+ were investigated to evaluate the role of intracellular Ca2+ stores and extracellular Ca2+ on the muscle contraction induced by motilin. The effects of atropine (a muscarinic receptor antagonist), spantide (a substance P receptor antagonist) and loxiglumide (a CCK-receptor antagonist) were also examined to determine whether the motilin-induced contraction was independent of those receptors. Motilin induced a contraction of the longitudinal and circular smooth muscle cells in a dose-dependent manner with the maximal effect attained after 30 seconds of incubation. The ED50 values were 0.3 nM and 0.05 nM, respectively. TMB-8 suppressed completely the motilin-induced contraction of both types of smooth muscle cells. Verapamil had only a slight suppressive effect. Removal of extracellular Ca2+ did not have any significant influence on motilin-induced contraction. The contractile response to motilin was not affected by atropine, spantide or loxiglumide. Our findings showed that:1) motilin has a direct contractile effect on both longitudinal and circular smooth muscle cells; 2) this contractile effect is not evoked via muscarinic, substance P or CCK receptors, and 3) the intracellular release of Ca2+ plays an important role in the contractile response to motilin on both types of smooth muscle cells.  相似文献   

17.
To investigate their potentially toxic effects on mammalian vascular smooth muscle, pentane extracts of papaya seeds and the chief active ingredient in the extracts, benzyl isothiocyanate (BITC), were tested for their effects on the contraction of strips of dog carotid artery. BITC and the papaya seed extract caused relaxation when added to tissue strips that had been pre-contracted with phenylephrine (PE). Incubation of the tissue with papaya seed extract or BITC caused inhibition of contraction when the strips were subsequently contracted with KCl or PE. This relaxation and inhibition of contraction did not appear to be endothelium-dependent, as endothelium-denuded rings showed the same degree of relaxation or inhibition of contraction in response to the preparations/drugs as those with the endothelium intact. The effects of both BITC and the extract were irreversible, i.e., the tissue did not recover to normal contractile ability after extensive washing. Exposure of the tissue to the papaya seed extract caused slower relaxation of the tissue, compared to controls, both after contraction with PE and subsequent addition of carbachol (CCh), and after contraction with KCl and then washing. Calcium imaging studies using cultured endothelial cells showed strong influxes of Ca2+ into the cells in response to addition of the papaya seed extract. We conclude that these extracts, when present in high concentration, are cytotoxic by increasing the membrane permeability to Ca2+, and that the vascular effects of papaya seed extracts are consistent with the notion that BITC is the chief bio-active ingredient.  相似文献   

18.
Theoretically, the overall effect of histamine on respiratory smooth muscle is the result of a subtle balance of contraction and relaxation. The aim of the study was to identify histamine type 2 (H2) and 3 (H3) receptor-dependent relaxing mechanisms in the contractile elements of the bovine tracheobronchial tree. In bronchial preparations, histamine induced very weak contractions, which were not exacerbated with the H2-antagonist cimetidine. Moreover, precontracted bronchial rings never relaxed in response to cumulative doses of histamine or amthamine (H2-agonist). In intact tracheal preparations, histamine induced strong contractions that were exacerbated by cimetidine (E(max): +17.2+/-6.6%) but not by thioperamide (H3-antagonist). Precontracted tracheal bundles did not relax in response to cumulative doses of the H3-agonist R-alpha-methylhistamine. The tracheal contractile response was higher in denuded compared to intact preparations (11.0+/-1.2 vs. 6.0+/-1.7 g). Cimetidine effect was dramatically potentiated in denuded tracheal strips (+40.0+/-11.7%). It is concluded that the weak response of bovine bronchi to histamine is due to a relative scarcity of H1 receptors on bronchial smooth muscle rather than to H2- or H3-dependent relaxation. In the bovine trachea, the smooth muscle possesses relaxing H2 but no H3 receptors. The epithelium exercises a relaxation, which is independent from H2 and H3 receptors.  相似文献   

19.
Phosphatidylinositol 3-kinase (PI3-kinase) activates protein kinase B (also known as Akt), which phosphorylates and activates a cyclic nucleotide phosphodiesterase 3B. Increases in cyclic nucleotide concentrations inhibit agonist-induced contraction of vascular smooth muscle. Thus we hypothesized that the PI3-kinase/Akt pathway may regulate vascular smooth muscle tone. In unstimulated, intact bovine carotid artery smooth muscle, the basal phosphorylation of Akt was higher than that in cultured smooth muscle cells. The phosphorylation of Akt decreases in a time-dependent manner when incubated with the PI3-kinase inhibitor, LY-294002. Agonist (serotonin)-, phorbol ester (phorbol 12,13-dibutyrate; PDBu)-, and depolarization (KCl)-induced contractions of vascular smooth muscles were all inhibited in a dose-dependent fashion by LY-294002. However, LY-294002 did not inhibit serotonin- or PDBu-induced increases in myosin light chain phosphorylation or total O(2) consumption, suggesting that inhibition of contraction was not mediated by reversal or inhibition of the pathways that lead to smooth muscle activation and contraction. Treatment of vascular smooth muscle with LY-294002 increased the activity of cAMP-dependent protein kinase and increased the phosphorylation of the cAMP-dependent protein kinase substrate heat shock protein 20 (HSP20). These data suggest that activation of the PI3-kinase/Akt pathway in unstimulated smooth muscle may modulate vascular smooth muscle tone (allow agonist-induced contraction) through inhibition of the cyclic nucleotide/HSP20 pathway and suggest that cyclic nucleotide-dependent inhibition of contraction is dissociated from the myosin light chain contractile regulatory pathways.  相似文献   

20.
The dry extract of Hedra helix leaves and its main active compounds, predominantly α-hederin and hederacoside C, has been traditionally believed to act spasmolytic. However, it has been recently proved that both, the extract of ivy and triterpenoid saponins, exhibit strong contractile effect on rat isolated stomach smooth muscle strips. It turned out that the most potent contractile agent isolated from the extract of ivy leaves is α-hederin. Thus, it seems reasonable to estimate the mechanism of the contractile effect of this saponin. The presented study was aimed at verifying the participation of cholinergic pathways (muscarinic and nicotine receptors) in α-hederin-induced contraction. The experiments were carried out on rat isolated stomach corpus and fundus strips under isotonic conditions. The preparations were preincubated with either atropine or hexamethonium and then exposed to α-hederin. All results are expressed as the percentage of the response to acetylcholine - a reference contractile agent. The obtained results revealed that the pretreatment of isolated stomach strips (corpus and fundus) with atropine neither prevented nor remarkably reduced the reaction of the preparations to α-hederin. Similarly, if the application of saponin was preceded by the administration of hexamethonium, the strength of the contraction of stomach fundus strips induced by α-hederin was not modified. Concluding, it can be assumed that the cholinergic pathways do not participate in α-hederin-evoked contraction of rat isolated stomach preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号