首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Stable, free radical nitroxides are commonly used ESR spectroscopy tools. However, it has recently been found that ESR observable signal from 5-membered ring spin-adducts or stable label nitroxides is lost or diminished by reaction with superoxide. A similar radical-radical annihilation was not found for six membered ring nitroxide radicals. To discern why six-membered ring nitroxides are not reduced under superoxide flux generated by hypoxanthine/xanthine oxidase, spectrophoprmetric (Cyt C) and chemilu-minescence (lucigenin) and ESR assays were used to follow the reactions. Spectrophotometry and chemi-luminescence clearly demonstrated that the six-membered piperidine-I-oxyl compounds (TEMPO, TEMPOL, and TEMPAMIN) rapidly react with superoxide: rate constants at pH 7.8 ranging from 7 × 104 to 1.2 × 10-5M-1s-l. The absence of detectable ESR signal loss results from facile re-oxidation of the corresponding hydroxylamine by superoxide. To fully corroborate the efficiency of the 6-membered nitroxide superoxide dismutase activity, they were shown to protect fully mammalian cells from oxidative damage resulting from exposure to the superoxide and hydrogen peroxide generating system hypoxanthine/ xanthine oxidase. Since six-membered cyclic nitroxides react with superoxide about 2 orders of magnitude faster than the corresponding 5-membered ring nitroxides. they may ultimately be more useful as superoxide oxide dismutase mimetic agents.  相似文献   

2.
Reactive free radicals and reactive oxygen species (ROS) induced by ultraviolet irradiation in human skin are strongly involved in the occurrence of skin damages like aging and cancer. In the present work an ex vivo method for the detection of free radicals/ROS in human skin biopsies during UV irradiation is presented. This method is based on the Electron Spin Resonance (ESR) spectroscopy and imaging and uses the radical trapping properties of nitroxides. The nitroxides 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO), 3-Carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCM), and 3-Carboxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCA), were investigated for their applicability of trapping reactive free radicals and reactive oxygen species in skin during UV irradiation. As a result of the trapping process the nitroxides were reduced to the EPR silent hydroxylamins. The reduction rate of TEMPO was due to both the UV radiation and the enzymatic activity of the skin. The nitroxides PCM and PCA are sufficiently stable in the skin and are solely reduced by UV-generated free radicals/ROS. The nitroxide PCA was used for imaging the spatial distribution of UV-generated free radicals/ROS. As a result of the homogeneous distribution of PCA in the skin, it was possible to estimate the penetration of UVA and UVB irradiation: The UV irradiation decreased the PCA intensity corresponding to its irradiance and penetration into the skin. This reduction was shown to be caused mainly by UVA radiation (320-400 nm).  相似文献   

3.
In order to gain more knowledge on the antioxidant role of nitroxide radicals, in this study we investigate their possible protective action against DNA damage induced by nitric oxide (NO) and reactive nitrogen oxide species deriving from it, namely nitroxyl anion (NO(-)) and peroxynitrite (ONOO(-)). Rat trachea epithelial cells were exposed under aerobic conditions to (1) NO generated by 150 microM S-nitrosoglutathione monoethyl ester (GSNO-MEE), (2) NO(-) generated by 200 microM Angeli's salt (Na(2)N(2)O(3)) (3) ONOO(-) generated by 1mM SIN-1 (3-morpholino-sydnonimine) and (4) 100 microM synthesized ONOO(-), in the absence and presence of 5 microM of two indolinonic nitroxides synthesized by us and the piperidine nitroxide TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl). DNA damage was assessed using the comet assay-a rapid and sensitive, single-cell gel electrophoresis technique used to detect primary DNA damage in individual cells. The parameter tail moment, used as an index of DNA damage, showed that in all cases the nitroxides remarkably inhibited DNA strand breaks induced by the different nitrogen oxide species. All three nitroxides protect to the same extent, except in the case of synthesized peroxynitrite where the aromatic nitroxides 1 and 2 are more efficient than TEMPO. These findings are consistent with the antioxidant character of nitroxide compounds and give additional information on the potential implications for their use as therapeutic agents.  相似文献   

4.
Piperidine nitroxides such as TEMPOL act as antioxidants in vivo due to their interconversion among nitroxide, hydroxylamine, and oxoammonium derivatives, but the mechanistic details of these reactions are unclear. As mitochondria are a significant site of piperidine nitroxide metabolism and action, we synthesized a mitochondria-targeted nitroxide, MitoTEMPOL, by conjugating TEMPOL to the lipophilic triphenylphosphonium cation. MitoTEMPOL was accumulated several hundred-fold into energized mitochondria where it was reduced to the hydroxylamine by direct reaction with ubiquinol. This reaction occurred by transfer of H() from ubiquinol to the nitroxide, with the ubisemiquinone radical product predominantly dismutating to ubiquinone and ubiquinol, together with a small amount reacting with oxygen to form superoxide. The piperidine nitroxides TEMPOL, TEMPO, and butylTEMPOL reacted similarly with ubiquinol in organic solvents but in mitochondrial membranes the rates varied in the order: MitoTEMPOL > butylTEMPOL > TEMPO > TEMPOL, which correlated with the extent of access of the nitroxide moiety to ubiquinol within the membrane. These findings suggest ways of using mitochondria-targeted compounds to modulate the coenzyme Q pool within mitochondria in vivo, and indicate that the antioxidant effects of mitochondria-targeted piperidine nitroxides can be ascribed to their corresponding hydroxylamines.  相似文献   

5.
Indolinonic nitroxide radicals efficiently scavenge oxygen- and carbon-centered radicals. They protect lipid and protein systems against oxidative stress, but little is known about their capacity to protect DNA against radical-mediated damage. We compare indolinonic nitroxides and the piperidines TEMPO and TEMPOL for their ability to inhibit strand breaks inflicted on DNA when it is illuminated in vitro in the presence of dibenzoylmethane (DBM) and a relative, Parsol 1789, used as a UVA-absorbing sunscreen. We used spin-trapping EPR to examine the formation of radicals and plasmid nicking assays to evaluate DNA strand breakage. The results have a two-fold interest. First, they show that all the nitroxides tested efficiently prevent DNA damage in a dose-dependent fashion. Vitamin E had no effect under the conditions used. Second, they show that carbon-centered radicals are produced on illumination of DBM and its relative and that their formation is probably responsible for the direct strand breaks found when naked DNA is illuminated in vitro in their presence. Additional work on the ability of sunscreens to enter human cells and their response to the light that penetrates sunscreen-protected skin would be necessary before any conclusion could be drawn as to whether the results reported here are relevant to human use of sunscreens.  相似文献   

6.
Piperidine nitroxides like 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) are persistent free radicals in non-acidic aqueous solutions and organic solvents that may have value as therapeutic agents in medicine. In biological environments, they undergo mostly reduction to stable hydroxylamines but can also undergo oxidation to reactive oxoammonium compounds. Reactions of the oxoammonium derivatives could have adverse consequences including chemical modification of vital macromolecules and deleterious effects on cell signaling. An examination of their reactivity in aqueous solution has shown that oxoammonium compounds can oxidize almost any organic as well as many inorganic molecules found in biological systems. Many of these reactions appear to be one-electron transfers that reduce the oxoammonium to the corresponding nitroxide species, in contrast to a prevalence of two-electron reductions of oxoammonium in organic solvents. Amino acids, alcohols, aldehydes, phospholipids, hydrogen peroxide, other nitroxides, hydroxylamines, phenols and certain transition metal ions and their complexes are among reductants of oxoammonium, causing conversion of this species to the paramagnetic nitroxide. On the other hand, thiols and oxoammonium yield products that cannot be detected by ESR even under conditions that would oxidize hydroxylamines to nitroxides. These products may include hindered secondary amines, sulfoxamides and sulfonamides. Thiol oxidation products other than disulfides cannot be restored to thiols by common enzymatic reduction pathways. Such products may also play a role in cell signaling events related to oxidative stress. Adverse consequences of the reactions of oxoammonium compounds may partially offset the putative beneficial effects of nitroxides in some therapeutic settings.  相似文献   

7.
While the exact mechanism of H2O2-induced cytotoxicity is unknown, there is considerable evidence implicating DNA as a primary target. A recent study showed that a cell-impermeable nitroxide protected mammalian cells from H2O2-induced cell killing and suggested that the protection was mediated through cell membrane-bound or extracellular factors. To further define the protective properties of nitroxides, Chinese hamster V79 cells were exposed to H2O2 with or without cell-permeable and impermeable nitroxides and selected metal chelators. EPR spectroscopy and paramagnetic line broadening agents were used to distinguish between intra- and extracellular nitroxide distribution. To study the effectiveness of nitroxide protection, in the absence of a cell membrane, H2O2-mediated damage to supercoiled plasmid DNA was evaluated. Both deferrioxamine and Tempol cross the cell membrane, and inhibited H2O2-mediated cell killing, whereas the cell-impermeable DTPA and nitroxide, CAT-1, failed to protect. Similar protective effects of the chelators and nitroxides were observed when L-histidine, which enhances intracellular injury, was added to H2O2. In contrast, when damage to plasmid DNA was induced (in the absence of a cell membrane), both nitroxides were protective. Collectively, these results do not support a role for membrane-bound or extracellular factors in mediating H2O2 cytotoxicity in mammalian cells.  相似文献   

8.
Wang H  Gao P  Jing L  Qin X  Sun X 《Biochimie》2012,94(9):1951-1959
Our previous researches showed that nitronyl nitroxyl derivatives, NNP and NNVP were good anti-oxidants and provided radioprotective effects in C6 cells. The objective of the present study is to investigate the possible antiviral effects and underlying pharmacological of the two nitronyl nitroxide radicals against CVB3 in vitro and in vivo. The results showed that NNP and NNVP were some of the most potent compounds in terms of their antiviral effects by protecting myocardial cells against oxidative damage of free radicals. Treatment with NNP or NNVP could decrease the intracellular ROS level in vitro. They could lead to a significant decrease in activities of biochemical markers AST, CK and LDH in infected murine serum and could increase SOD and CAT activities and decreased MDA activities compared with infected control in vivo. NNP and NNVP could reduce NO production in infected mice by reacting with NO to produce the imino nitroxides which was confirmed by ESR spectrometry. In addition, NNP and NNVP could both decrease the mRNA expression of proinflammatory cytokines, TNF-α, IL-2 and IL-6. In conclusion, nitronyl nitroxide radicals NNP and NNVP were shown to have antiviral activities against CVB3 and they may represent potential therapeutic agents for viral myocarditis.  相似文献   

9.
Nitrone/nitroso spin traps are often used for detection of unstable hydroxyl radical giving stable nitroxide radicals with characteristic electron spin resonance (ESR) signals. This technique may be useful only when the nitroxide radicals are kept stable in the reaction system. The aim of the present study is to clarify whether the nitroxide radicals are kept stable in the presence of the hydroxyl radical scavengers. Effect of hydroxyl radical scavengers on the ESR signals of nitroxide radicals, 2,2,6,6-tetramethyI-piperi-dine-N-oxyl (TEMPO) and the spin adduct (DMPO-OH) of 5,5-dimethyl-l-pyrroline N-oxide (DMPO) and hydroxyl radical, was examined. Although the ESR signals of TEMPO and the DMPO-OH spin adduct were unchanged on treatment with ethanol and dimethyl sulfoxide, their intensities were effectively decreased on treatment with 6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid (Trolox), cysteine, glutathione, 2-mercaptoethanol and metallothionein. Hence, the results of the detection of hydroxyl radical in the presence of phenolic and thiol antioxidants by the ESR technique using nitrone/nitroso spin traps may be unreliable.  相似文献   

10.
Nitroxides block DNA scission and protect cells from oxidative damage.   总被引:1,自引:0,他引:1  
The protective effect of cyclic stable nitroxide free radicals, having SOD-like activity, against oxidative damage was studied by using Escherichia coli xthA DNA repair-deficient mutant hypersensitive to H2O2. Oxidative damage induced by H2O2 was assayed by monitoring cell survival. The metal chelator 1,10-phenanthroline (OP), which readily intercalates into DNA, potentiated the H2O2-induced damage. The extent of in vivo DNA scission and degradation was studied and compared with the loss of cell viability. The extent of DNA breakage correlated with cell killing, supporting previous suggestions that DNA is the crucial cellular target of H2O2 cytotoxicity. The xthA cells were protected by catalase but not by superoxide dismutase (SOD). Both five- and six-membered ring nitroxides, having SOD-like activity, protected growing and resting cells from H2O2 toxicity, without lowering H2O2 concentration. To check whether nitroxides protect against O2.(-)-independent injury also, experiments were repeated under hypoxia. These nitroxides also protected hypoxic cells against H2O2, suggesting alternative modes of protection. Since nitroxides were found to reoxidize DNA-bound iron(II), the present results suggest that nitroxides protect by oxidizing reduced transition metals, thus interfering with the Fenton reaction.  相似文献   

11.
Reduction and destruction rates of nitroxide spin probes   总被引:2,自引:0,他引:2  
A series of nitroxides was tested for rates of one-electron reduction in a chemical, a photochemical, and two biological systems by ESR assays. In all cases, piperidine and hydropyridine nitroxides were reduced consistently more rapidly than pyrroline and pyrrolidine nitroxides. Substituents on the nitroxides also affected reduction rates, although not as greatly as ring structure. One of the reduction systems, consisting of the photosensitizer FMN and the photoreductant EDTA, was used to study both anaerobic reduction and O2-dependent reoxidation of some of the nitroxides. Reduced piperidine and hydropyridine nitroxides were also oxidized more rapidly than the reduced pyrroline and pyrrolidine nitroxides. Reoxidation subsequent to reduction was partially inhibited by superoxide dismutase, indicating that superoxide radicals are involved in the process. Even after prolonged reoxidation, not all of the probe molecules were returned to their oxidized form, implying an irreversible "destruction" of the spin probe concomitant with its chemical reduction. Probe destruction was studied more specifically with a photochemical system for generating methyl radicals, which showed that these carbon-centered radicals destroyed different nitroxides at rates which were much less influenced by the nitroxide structures than one-electron reduction was.  相似文献   

12.
Trans- and cis-azethoxyl nitroxides 1, 2, 3 and 4 can be trapped in the cavities of thiourea crystals. The presence of a single gauche conformation on either side of the pyrrolidine ring within the crystals was indicated by the ESR spectra. Rotation about the long molecular axis then corresponds approximately to y-axis motion of the nitroxide moiety. Proxyl nitroxides in which the nitroxide group is located on the penultimate carbon of long chain lipids can also be trapped and were shown to adopt the azethoxyl conformation in the thiourea crystals. The measured deltaA values (A parallel to - A perpendicular) of oriented egg lecithin multilayers containing trans- and cis-azethoxyl nitroxides 1 and 2 were quite small, consistent with the unique orientation of the nitroxide principal axes with respect to the long axis of the molecule. The deltaA values for a series of lipids bearing a label near the terminus of the chain were very similar to that of 1, showing that the azethoxyl conformation is likely the predominant one in these labels in orienting systems. Computer simulations of the ESR spectra of 1 and 2 in egg lecithin vesicles provided values for molecular orientation and motion parameters consistent with those expected from a consideration of molecular models in the extended (all trans) conformation. Azethoxyl nitroxides have also proven useful in the investigation of motion restricted (boundary) lipid in a lipid-protein system. Thus, the values (69 +/- 10%) for the amount of boundary lipid in the chromatophore membranes from Rhodopseudomonas sphaeroides as determined using trans- 2 and cis- 2 are in good agreement with values using 16-doxylstearic acid (64 +/- 3%). The fact that all three labels show about the same fraction of boundary lipid in this system indicates that the lipid binding sites are relatively insensitive to the geometry of the lipid chain. Also, both 1 and 2 appear to be able to detect a third lipid environment not seen with the doxyl fatty acid. The apparent fluidity of this component lies between that of boundary and bilayer lipid. The unique orientation of the nitroxide principal axes with respect to the long molecular axis in azethoxyl nitroxides 1 and 2 allows detection of hindrance to rotation about the long molecular axis, in contrast to the analogous doxyl and proxyl fatty acids. Comparative reduction studies using ascorbate and dithiothreitol indicate that azethoxyl nitroxides are slightly more resistant toward reduction than proxyl nitroxides and much more resistant than doxyl nitroxides.  相似文献   

13.
Superoxide scavenging activities (SSA) of newly synthesized spin-labeled nitrosourea and triazene derivatives, and their precursor nitroxides were investigated by the ESR/spin-trapping method using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and hypoxanthine/xanthine oxidase as the superoxide-generating system. The spin-labeled nitrosoureas, triazenes and their precursor nitroxides exhibited excellent SSA, whereas clinically used nitrosourea and triazene, which do not contain the nitroxide moiety, did not show any SSA. Furthermore, it was deduced that these nitroxides scavenge superoxide by redox cycling between nitroxide and corresponding hydroxylamine.  相似文献   

14.
This study was performed to evaluate the effects, if any, of aromatic nitroxides, namely, indolinic nitroxides, on membrane fluidity of rat epithelial cells using steady-state fluorescence. These nitroxides are being increasingly considered as new and versatile compounds to reduce oxidative stress in biological systems. Hence, the results obtained in this study will give more insights on the interaction of these compounds with biological structures which at present is lacking, especially in view of their possible application as antioxidant therapeutic agents. The probes DPH and Laurdan which give information on the hydrophobic and hydrophilic-hydrophobic regions of the membrane bilayer, respectively, showed that nitroxide 1 (1,2-dihydro-2-methyl-3H-indole-3-one-1-oxyl) significantly increases membrane fluidity, whereas the corresponding phenylimino nitroxide derivative 2 (1,2-dihydro-2-methyl-3H-indole-3-phenylimino-1-oxyl) leads to membrane rigidification. The aliphatic nitroxide TEMPO included in this study for comparison produced no modifications. Consequently, it appears that the structure of the heterocyclic rings (aromatic or aliphatic) and the substituents may affect membrane fluidity differently.  相似文献   

15.
The inhibiting effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its 4-substituted derivatives in reactions of linoleyl acid or linoleyl alcohol oxidation catalyzed by potato tuber 5-lipoxygenase were investigated. Inhibiting properties of stable nitroxyl radicals in presence of lubrol and SDS were reduced at the transition from TEMPO to 4-hydroxy-TEMPO or 4-amino-TEMPO and increased at use of adamantane-1-carboxylic or 3-methyladamantane-1-carboxylic acid 1-oxyl-2,2,6,6-tetramethylpiperidine-4-yl esters. Enzyme activity at saturating concentrations of inhibitor was not suppressed completely, and decreased up to the certain level determined by the substrate nature. The dependence of partial inhibition efficiency on rotational correlation time of stable nitroxides in model micellar systems were analysed. It was supposed that 5-lipoxygenase inhibition includes the interaction of hydrophobic nitroxide with radical intermediate formed in enzymatic process.  相似文献   

16.
Erythrocytes from normal mice and mice infected with the malarial parasite Plasmodium berghei reduce the water-soluble spin probes 2,2,6,6-tetramethylpiperidine-4-hydroxy-N-oxyl (TEMPOL), 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and 2,2,6,6-tetramethylpiperidine-4-keto-N-oxyl (TEMPONE) at similar rates under both air and N2 atmospheres. The ESR signal of the lipid-soluble spin probe 5-doxyl-stearate is stable on incorporation into erythrocytes from normal mice. In contrast, parasitized red cells reduce this nitroxide probe, at a rate which increases with the level of parasitemia. Inhibitors of electron transport such as KCN and NaN3, increase the rate of reduction. We propose that nitroxide reduction occurs via the electron transport chain in the parasite. The antimalarial drug primaquine causes reduction of both water-soluble and lipid-soluble spin probes. This action of primaquine is independent of its ability to release H2O2 from oxyhemoglobin, and is ascribed to the ability of primaquine to accelerate flux through the hexose monophosphate shunt. The increased production of NADPH results in increased rates of reduction of the nitroxide radicals. Methylene blue, which also increases flux through the shunt, is even more effective than primaquine at reducing the nitroxides. Chloroquine has no such effect. Parasitized mice treated with chloroquine six hours prior to ESR measurements show less nitroxide reducing capacity than do untreated mice. Chloroquine is known to decrease flux through the hexose monophosphate shunt. The metabolic influences of the two antimalarial drugs are, thus, quite different.  相似文献   

17.
The ability of nitroxide spin labels to act as oxidizers of reduced nitroxides (hydroxylamines) in biological and model systems was demonstrated. All of the nitroxides tested were able to act as oxidizing agents with respect to hydroxylamine derivatives of nitroxides. The rates of these reactions were first order with respect to nitroxide concentration and with respect to hydroxylamine concentration, making the reaction second order overall. The second-order rate constants are reported for a number of these reactions. These reactions proceeded to an equilibrium state and the equilibrium constants for several combinations of reactants are presented. Both the rate constants and the equilibrium constants were found to be dependent on the ring structure of the nitroxide and hydroxylamine, with piperidines being reduced more easily and pyrrolidines and oxazolidines being oxidized more easily. All of the hydroxylamine derivatives were oxidized by air to their respective nitroxides, with the rate of this oxidation greater for pyrrolidines than for piperidines. Furthermore, hydroxylamines that are permeable to lipid bilayers were able to act as shuttles of reducing equivalents to liposome-encapsulated nitroxides that were otherwise inaccessible to reducing agents. This mechanism of shuttling of electrons was able to explain the relatively rapid reduction by cells of a nonpermeable nitroxide in the presence of a permeable nitroxide.  相似文献   

18.
The binding site topography of progesterone-binding globulin (PBG) purified from pregnant guinea pig serum was examined using synthesized spin-labeled ligands and electron spin resonance (ESR) spectroscopy. A series of deoxycorticosterone-nitroxide (DOC-NO) derivatives were prepared, bearing the free radical on the side chain at increasing distance (d) from the steroid nucleus. The ability of the spin-labeled steroids to specifically bind to PBG was assessed by measurement of their relative binding affinity as compared to progesterone. ESR spectra of the bound steroid nitroxide radical were used to calculate the rotational correlation times tau c for the nitroxides as a function of their distance d to the protein-bound steroid nucleus. The data showed that the side chain nitroxide exhibited an unrestrained rotation in a water-like environment when d reached about 18 A. This would correspond to a PBG steroid binding site depth of about 28 A and suggests that the bound steroid in the PBG site is oriented with the side chain at C-17 directed toward the outside of the protein binding crevice.  相似文献   

19.
Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines.  相似文献   

20.
Reduction of radicals in mouse lung was characterized in whole animals using an L-band ESR technique and nitroxide radicals as probes. An aqueous solution of nitroxide radical was immediately instilled intratracheally to mouse after euthanasia. Nitroxide radicals without charged groups were reduced significantly in the lung, while radicals with charged groups were only slightly reduced. Permeation rates across lung plasma membrane were not rate limiting of the stage of reduction of the noncharged nitroxides. Michaelis parameters, apparent Km and apparent Vmax, were obtained from the Lineweaver-Burk plots of the reduction. Among noncharged nitroxides with constant apparent Vmax, radicals with a larger n-octanol/water partition coefficient showed a lower apparent Km, thereby suggesting that the concentration of these nitroxides in the membrane contributes to apparent Km. The reduction rate of noncharged nitroxide, hydroxy-TEMPO, was influenced by noncharged SH reagents instilled together with the nitroxide; dithiothreitol stimulated the reduction, while the oxidized reagent inhibited it. The Lineweaver-Burk plots of the nitroxide reduction in the presence of various concentrations of dithiothreitol suggest the possibility that the reduction system for hydroxy-TEMPO is based on a kind of ping pong bi-reactant mechanism, and that the reduction system utilizes SH as an electron donor. Endogenous glutathione contributed partially to the reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号