首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of thrombin by heparin cofactor (HCII) is accelerated approximately 1000-fold by heparin or dermatan sulfate. We found recently that the mutation Arg189----His decreases the affinity of HCII for dermatan sulfate but not for heparin (Blinder, M. A., Andersson, T. R., Abildgaard, U., and Tollefsen, D. M. (1989) J. Biol. Chem. 264, 5128-5133). Other investigators have implicated Arg47 and Lys125 of anti-thrombin (homologous to Arg103 and Lys185 of HCII) in heparin binding. To investigate the corresponding residues in HCII, we have constructed amino acid substitutions (Arg103----Leu, Gln, or Trp; Lys185----Met, Asn, or Thr) by oligonucleotide-directed mutagenesis of the cDNA and expressed the products in Escherichia coli. The recombinant HCII variants were assayed for binding to heparin-Sepharose and for inhibition of thrombin in the presence of various concentrations of heparin or dermatan sulfate. All of the Arg103 variants bound to heparin with normal affinity. Furthermore, inhibition of thrombin by the Arg103----Leu variant occurred at a normal rate in the absence of a glycosaminoglycan and was accelerated by normal concentrations of heparin and dermatan sulfate. These results indicate that HCII, unlike anti-thrombin, does not require a positive charge at this position for the interaction with heparin or dermatan sulfate. The Arg103----Gln and Arg103----Trp variants inhibited thrombin at about one-third of the normal rate in the absence of a glycosaminoglycan, suggesting that these mutations exert an effect on the reactive site (Leu444-Ser445) of HCII. All of the Lys185 variants bound to heparin with decreased affinity but inhibited thrombin at approximately the normal rate in the absence of a glycosaminoglycan. These variants required greater than 10-fold higher concentrations of heparin to accelerate inhibition of thrombin and were not stimulated significantly by dermatan sulfate, suggesting that heparin and dermatan sulfate interact with Lys185 of HCII. These results provide evidence that the glycosaminoglycan-binding site in HCII includes Lys185 but not Arg103, both of which were predicted to be involved by homology to anti-thrombin.  相似文献   

2.
R Yamagishi  T Koide  N Sakuragawa 《FEBS letters》1987,225(1-2):109-112
Heparin cofactor II (HC II) and thrombin were chemically modified with pyridoxal 5'-phosphate, and their effects on the inhibition of thrombin by HC II in the presence of heparin or dermatan sulfate were studied. The inhibition of thrombin by HC II was enhanced about 7000-fold in the presence of heparin or dermatan sulfate. However, this enhancement by heparin dwindled to 110- and 9.6-fold when the modified HC II and the modified thrombin, respectively, were substituted for native proteins. Essentially identical results were obtained from the experiments using dermatan sulfate. These results indicate that the binding of heparin or dermatan sulfate to both thrombin and HC II is required for the sulfated polysaccharide-dependent acceleration of the thrombin inhibition by HC II, and the binding to thrombin is more essential for the reaction.  相似文献   

3.
Factor IXa (FIXa) is known to have a binding site for heparin that has not been mapped by a mutagenesis study. By homology modeling based on structural data, we identified eight basic residues in the catalytic domain of FIXa that can potentially bind to heparin. These residues, Lys(98), Lys(126), Arg(165), Arg(170), Lys(173), Lys(230), Arg(233), and Lys(239) (chymotrypsin numbering) were substituted with Ala in separate constructs in Gla-domainless forms. Following activation, it was found that all FIXa derivatives cleaved the chromogenic substrate CBS 31.39 with near normal catalytic efficiencies. Similarly, antithrombin inactivated FIXa derivatives with a similar second-order association rate constant (k(2)) in both the absence and presence of pentasaccharide. In the presence of a full-length heparin, however, k(2) values were dramatically impaired with certain mutants. Direct binding studies revealed that the same mutants lost their affinities for binding to heparin-Sepharose. Both kinetic and direct binding data indicated that five basic residues of FIXa in the following order of importance, Arg(233) > Arg(165) > Lys(230) > Lys(126) > Arg(170) are critical for binding to heparin. Consistent with these results, examination of the crystal structure of the catalytic domain of FIXa indicated that all five basic residues are spatially aligned in a manner optimal for interaction with heparin.  相似文献   

4.
Inhibition of thrombin by heparin cofactor II (HCII) is accelerated 1000-fold by heparin or dermatan sulfate. To investigate the contribution of basic residues of the A helix of HCII to this activation, we constructed amino acid substitutions (K101Q, R103L, and R106L) by site-directed mutagenesis. K101Q greatly reduced heparin cofactor activity and required a more than 10-fold higher concentration of dermatan sulfate to accelerate thrombin inhibition compared with wild-type recombinant HCII. Thrombin inhibition by R106L was not significantly stimulated by dermatan sulfate. These results provide evidence that basic residues of the A helix of HCII (Lys(101) and Arg(106)) are necessary for heparin- or dermatan sulfate-accelerated thrombin inhibition.  相似文献   

5.
Interaction of heparin cofactor II with neutrophil elastase and cathepsin G   总被引:1,自引:0,他引:1  
We investigated the interaction of the human plasma proteinase inhibitor heparin cofactor II (HC) with human neutrophil elastase and cathepsin G in order to examine 1) proteinase inhibition by HC, 2) inactivation of HC, and 3) the effect of glycosaminoglycans on inhibition and inactivation. We found that HC inhibited cathepsin G, but not elastase, with a rate constant of 6.0 x 10(6) M-1 min-1. Inhibition was stable, with a dissociation rate constant of 1.0 x 10(-3) min-1. Heparin and dermatan sulfate diminished inhibition slightly. Both neutrophil elastase and cathepsin G at catalytic concentrations destroyed the thrombin inhibition activity of HC. Inactivation was accompanied by a dramatic increase in heat stability, as occurs with other serine proteinase inhibitors. Proteolysis of HC (Mr 66,000) produced a species (Mr 58,000) that retained thrombin inhibition activity, and an inactive species of Mr 48,000. Amino acid sequence analysis led to the conclusion that both neutrophil elastase and cathepsin G cleave HC at Ile66, which does not affect HC activity, and at Val439, near the reactive site Leu444, which inactivates HC. Since cathepsin G is inhibited by HC and also inactivates HC, we conclude that cathepsin G participates in both reactions simultaneously so that small amounts of cathepsin G can inactivate a molar excess of HC. High concentrations of heparin and dermatan sulfate accelerated inactivation of HC by neutrophil proteinases, with heparin having a greater effect. Heparin and dermatan sulfate appeared to alter the pattern, and not just the rate, of proteolysis of HC. We conclude that while HC is an effective inhibitor of cathepsin G, it can be proteolyzed by neutrophil proteinases to generate first an active inhibitor and then an inactive molecule. This two-step mechanism might be important in the generation of chemotactic activity from the amino-terminal region of HC.  相似文献   

6.
Plasminogen activator inhibitor 1 (PAI-1), a member of the serpin superfamily of proteins, has been demonstrated previously to interact functionally with the glycosaminoglycan heparin (Ehrlich, H.J., Keijer, J., Preissner, K. T., Klein Gebbink, R., and Pannekoek, H. (1991) Biochemistry 30, 1021-1028). Heparin specifically enhances the rate of association between PAI-1 and thrombin about 2 orders of magnitude, whereas no effect is detected with other serine proteases (e.g. factor Xa). For the heparin-dependent serpins antithrombin III and heparin cofactor II, basic amino acid residues in and around the helix D subdomain were proposed to be involved in the binding of glycosaminoglycans. Here we employed site-directed mutagenesis of full-length PAI-1 cDNA to identify the amino acid residues that mediate heparin binding. To that end, 15 single-point mutants of PAI-1, each having individual arginyl, lysyl, or histidyl residues replaced by a neutral (alanyl) residue ("ala-scan"), and one double mutant were constructed, expressed in Escherichia coli, and purified to apparent homogeneity. The purified biologically active proteins were subjected to the following analyses: (i) heparin-dependent inhibition of thrombin; (ii) heparin-dependent formation of sodium dodecyl sulfate-stable complexes with thrombin; and (iii) binding to and elution from heparin-Sepharose. Based on the data presented, we propose that the amino acid residues Lys65, Lys69, Arg76, Lys80, and Lys88 constitute major determinants for heparin binding of PAI-1. These residues are located in and around the helix D domain and are conserved in the other heparin-dependent thrombin inhibitors, antithrombin III and heparin cofactor II.  相似文献   

7.
Heparin cofactor II (HCII) inhibits thrombin rapidly in human plasma in the presence of heparin or dermatan sulfate. To determine the minimum structure of dermatan sulfate required to activate HCII, the glycosaminoglycan was partially degraded by sequential treatment with periodate, [3H]borohydride, and sulfuric acid. Labeled oligosaccharide fragments were separated by gel filtration chromatography. Purified fragments were then applied to a column of HCII bound to concanavalin A-Sepharose, and bound oligosaccharides were eluted with a gradient of sodium chloride. Di-, tetra-, and hexasaccharide fragments did not bind to HCII, while 15% of the octasaccharides and up to 45% of larger fragments bound. Octasaccharides that bound to the HCII column had a greater negative charge than the run-through material based on anion-exchange chromatography, suggesting that they contained a greater number of sulfate groups per molecule. Fragments of dermatan sulfate containing a minimum of 12-14 sugar residues accelerated inhibition of thrombin by HCII. Fragments of this length that bound to the column of immobilized HCII had molar specific activities greater than those of the fragments that did not bind. These studies suggest that HCII is activated by dermatan sulfate fragments greater than or equal to 12 residues in length that contain a specific octasaccharide sequence required for binding to the inhibitor.  相似文献   

8.
FGF-7 is induced after injury and induces the proliferation of keratinocytes. Like most members of the FGF family, the activity of FGF-7 is strongly influenced by binding to heparin, but this glycosaminoglycan is absent on keratinocyte cell surfaces and minimally present in the wound environment. In this investigation we compared the relative activity of heparan sulfate and chondroitin sulfate B (dermatan sulfate), glycosaminoglycans that are present in wounds. A lymphoid cell line (BaF/KGFR) containing the FGF-7 receptor (FGFR2 IIIb) was treated with FGF-7 and with various glycosaminoglycans. FGF-7 did not support cell proliferation in the absence of glycosaminoglycan or with addition of heparan sulfate or chondroitin sulfate A/C but did stimulate BaF/KGFR division in the presence of dermatan sulfate or highly sulfated low molecular weight fractions of dermatan. Dermatan sulfate also enabled FGF-7-dependent phosphorylation of mitogen-activated protein kinase and promoted binding of radiolabeled FGF-7 to FGFR2 IIIb. In addition, dermatan sulfate and FGF-7 stimulated growth of normal keratinocytes in culture. Thus, dermatan sulfate, the predominant glycosaminoglycan in skin, is the principle cofactor for FGF-7.  相似文献   

9.
We determined the role of specific thrombin "exosites" in the mechanism of inhibition by the plasma serine proteinase inhibitors heparin cofactor II (HC) and antithrombin (AT) in the absence and presence of a glycosaminoglycan by comparing the inhibition of alpha-thrombin to epsilon- and gamma T-thrombin (produced by partial proteolysis of alpha-thrombin by elastase and trypsin, respectively). All of the thrombin derivatives were inhibited in a similar manner by AT, either in the absence or presence of heparin, which confirmed the integrity of both heparin binding abilities and serpin reactivities of epsilon- and gamma T-thrombin compared to alpha-thrombin. Antithrombin activities of HC in the absence of a glycosaminoglycan with alpha-, epsilon, and gamma T-thrombin were similar with rate constants of 3.5, 2.4, and 1.2 x 10(4) M-1 min-1, respectively. Interestingly, in the presence of glycosaminoglycans the maximal inhibition rate constants by HC with heparin and dermatan sulfate, respectively, were as follows: 30.0 x 10(7) and 60.5 x 10(7) for alpha-thrombin, 14.6 x 10(7) and 24.3 x 10(7) for epsilon-thrombin, and 0.017 x 10(7) and 0.034 x 10(7) M-1 min-1 for gamma T-thrombin. A hirudin carboxyl-terminal peptide, which binds to anion-binding exosite-I of alpha-thrombin, dramatically reduced alpha-thrombin inhibition by HC in the presence of heparin but not in its absence. We analyzed our results in relation to the recently determined x-ray structure of D-Phe-Pro-Arg-chloromethyl ketone-alpha-thrombin (Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S. R., and Hofsteenge, J. (1989) EMBO J. 8, 3467-3475). Our results suggest that the beta-loop region of anion-binding exosite-I in alpha-thrombin, which is not present in gamma T-thrombin, is essential for the rapid inhibition reaction by HC in the presence of a glycosaminoglycan. Therefore, alpha-thrombin and its derivatives would be recognized and inhibited differently by HC and AT in the presence of a glycosaminoglycan.  相似文献   

10.
Although fibrin-bound thrombin is resistant to inactivation by heparin.antithrombin and heparin.heparin cofactor II complexes, indirect studies in plasma systems suggest that the dermatan sulfate.heparin cofactor II complex can inhibit fibrin-bound thrombin. Herein we demonstrate that fibrin monomer produces a 240-fold decrease in the heparin-catalyzed rate of thrombin inhibition by heparin cofactor II but reduces the dermatan sulfate-catalyzed rate only 3-fold. The protection of fibrin-bound thrombin from inhibition by heparin.heparin cofactor II reflects heparin-mediated bridging of thrombin to fibrin that results in the formation of a ternary heparin.thrombin.fibrin complex. This complex, formed as a result of three binary interactions (thrombin.fibrin, thrombin.heparin, and heparin.fibrin), limits accessibility of heparin-catalyzed inhibitors to thrombin and induces conformational changes at the active site of the enzyme. In contrast, dermatan sulfate binds to thrombin but does not bind to fibrin. Although a ternary dermatan sulfate. thrombin.fibrin complex forms, without dermatan sulfate-mediated bridging of thrombin to fibrin, only two binary interactions exist (thrombin.fibrin and thrombin. dermatan sulfate). Consequently, thrombin remains susceptible to inactivation by heparin cofactor II. This study explains why fibrin-bound thrombin is susceptible to inactivation by heparin cofactor II in the presence of dermatan sulfate but not heparin.  相似文献   

11.
We recently demonstrated that a template mechanism makes a significant contribution to the heparin-accelerated inactivation of factor Xa (FXa) by antithrombin at physiologic Ca(2+), suggesting that FXa has a potential heparin-binding site. Structural data indicate that 7 of the 11 basic residues of the heparin-binding exosite of thrombin are conserved at similar three-dimensional locations in FXa. These residues, Arg(93), Lys(96), Arg(125), Arg(165), Lys(169), Lys(236), and Arg(240) were substituted with Ala in separate constructs in Gla domainless forms. It was found that all derivatives cleave Spectrozyme FXa with similar catalytic efficiencies. Antithrombin inactivated FXa derivatives with a similar second-order association rate constant (k(2)) in both the absence and presence of pentasaccharide. In the presence of heparin, however, k(2) with certain mutants were impaired up to 25-fold. Moreover, these mutants bound to heparin-Sepharose with lower affinities. Heparin concentration dependence of the inactivation revealed that only the template portion of the cofactor effect of heparin was affected by the mutagenesis. The order of importance of these residues for binding heparin was as follows: Arg(240) > Lys(236) > Lys(169) > Arg(165) > Lys(96) > Arg(93) >/= Arg(125). Interestingly, further study suggested that certain basic residues of this site, particularly Arg(165) and Lys(169), play key roles in factor Va and/or prothrombin recognition by FXa in prothrombinase.  相似文献   

12.
We used site-directed mutagenesis to investigate the role of Glu(69), Asp(70), Asp(71), Asp(72), Tyr-sulfate(73), and Asp(75) in the second acidic region (AR2) of the serpin heparin cofactor II (HCII) during formation of the thrombin.HCII complex with and without glycosaminoglycans. E69Q/D70N/D71N recombinant (r)HCII, D72N/Y73F/D75N rHCII, and E69Q/D70N/D71N/D72N/Y73F/D75N rHCII were prepared to localize acidic residues important for thrombin inhibition. Interestingly, D72N/Y73F/D75N rHCII had significantly enhanced thrombin inhibition without glycosaminoglycan (4-fold greater) and with heparin (6-fold greater), showing maximal activity at 2 microg/ml heparin compared with wild-type recombinant HCII (wt-rHCII) with maximal activity at 20 microg/ml heparin. The other rHCII mutants had lesser-enhanced activities, but they all eluted from heparin-Sepharose at significantly higher ionic strengths compared with wt-rHCII. Neutralizing and reversing the charge of Asp(72), Tyr-sulfate(73), and Asp(75) were done to characterize their individual contribution to HCII activity. Only Y73K rHCII and D75K rHCII have significantly increased heparin cofactor activity compared with wt-rHCII; however, all of the individual rHCII mutants required substantially less glycosaminoglycan at maximal inhibition than did wt-rHCII. Inhibition of either alpha-thrombin/hirugen or gamma(T)-thrombin (both with an altered anion-binding exosite-1) by the AR2 rHCII mutants was similar to wt-rHCII. D72N/Y73F/D75N rHCII and D75K rHCII were significantly more active than wt-rHCII in a plasma-based thrombin inhibition assay with glycosaminoglycans. These results indicate that improved thrombin inhibition in the AR2 HCII mutants is mediated by enhanced interactions between the acidic domain and anion-binding exosite-1 of thrombin and that AR2 may be a "molecular rheostat" to promote thrombin inhibition in the presence of glycosaminoglycans.  相似文献   

13.
Eight different sulfated polysaccharides were isolated from Chlorophyta. All exhibited thrombin inhibition through a heparin cofactor II (HCII)-dependent pathway, and their effects on the inhibition of thrombin were more potent than those of heparin or dermatan sulfate. In particular, remarkably potent thrombin inhibition was found for the sulfated polysaccharides isolated from the Codiales. In the presence of these sulfated polysaccharides, both the recombinant HCII (rHCII) variants Lys(173)-->Leu and Arg(189)-->His, which are defective in interactions with heparin and dermatan sulfate, respectively, inhibited thrombin in a manner similar to native rHCII. This result indicates that the binding site of HCII for each of these eight sulfated polysaccharides is different from the heparin- or dermatan sulfate-binding site. All the sulfated polysaccharides but RS-2 significantly stimulated the inhibition of thrombin by an N-terminal deletion mutant of HCII (rHCII-Delta74). Furthermore, hirudin(54-65) decreased only 2-5-fold the rate of thrombin inhibition by HCII stimulated by the sulfated polysaccharides, while HD22, a single-stranded DNA aptamer that binds exosite II of thrombin, produced an approximately 10-fold reduction in this rate. These results suggest that, unlike heparin and dermatan sulfate, the sulfated polysaccharides isolated from Chlorophyta activate HCII primarily by an allosteric mechanism different from displacement and template mechanisms.  相似文献   

14.
The relationship between thrombomodulin-associated O-linked glycosammoglycans (GAGs) and the exogenous GAGs heparin or dermatan sulfate was studied in the inhibition of thrombin by antithrombin III (AT III) or heparin cofactor II (HC II). Both rabbit thrombomodulin (TM) and two glycoforms (a high-Mr form containing GAGs and a low-Mr form lacking the majority of O-linked GAGs) of a recombinant human TM deletion mutant (rec-TM) were used. The rapid inactivation of thrombin by HC II in the presence of dermatan sulfate was prevented by both the high-Mr rec-TM and the rabbit TM. In contrast, both rabbit TM treated with chondroitin ABC lyase to remove O-linked GAGs and the low-Mr form of rec-TM had only weak protecting effects. In the absence of exogeneous dermatan sulfate, thrombin inhibition by a high concentration of HC II was slightly accelerated by the high-Mr form of rec-TM but protected by rabbit TM. When thrombin inhibition by AT III in the presence of heparin was studied, both high-Mr rec-TM and rabbit TM again invoked a similar reduction of inactivation rates, whereas in the absence of exogenous heparin, both high-Mr forms accelerated thrombin inhibition by AT III. The diverse reactivities of various forms of TM towards HC II and AT III were also observed during protein C activation by the thrombin-TM complex. These results suggest that thrombin activity at the vessel wall or in fluid phase may undergo major kinetic modulations depending on the type of protease inhibitor, the presence or absence of exogenous GAGs and the glycosylation phenotype of TM. The dependence of TM anticoagulant function on the presence of an intrinsic GAG moiety suggests that variant glycoforms of this endothelial cell cofactor may be expressed differently in a species-, organ-, or tissue-specific manner as a means to regulate TM function in diverse vasculatures.  相似文献   

15.
Glycosaminoglycans were isolated from the eel skin (Anguilla japonica) by actinase and endonuclease digestions, followed by a beta-elimination reaction and DEAE-Sephacel chromatography. Dermatan sulfate was the major glycosaminoglycan in the eel skin with 88% of the total uronic acid. The content of the IdoA2Salpha1-->4GalNAc4S sequence in eel skin, which shows anticoagulant activity through binding to heparin cofactor II, was two times higher than that of dermatan sulfate from porcine skin. The anti-IIa activity of eel skin dermatan sulfate was determined to be 2.4 units/mg, whereas dermatan sulfate from porcine skin shows 23.2 units/mg. The average molecular weight of dermatan sulfate was determined by gel chromatography on a TSKgel G3000SWXL column as 14 kDa. Based on 1H NMR spectroscopy, the presence of 3-sulfated and/or 2,3-sulfated IdoA residues was suggested. The reason why highly sulfated dermatan sulfate does not show anticoagulant activity is discussed. In addition to dermatan sulfate, the eel skin contained a small amount of keratan sulfate, which was identified by keratanase treatment.  相似文献   

16.
The structure of post-translational modifications of human heparin cofactor II isolated from human serum and from recombinant Chinese hamster ovary cells and their effects on heparin binding have been characterized. Oligosaccharide chains were found attached to all three potential N-glycosylation sites in both protein preparations. The carbohydrate structures of heparin cofactor II circulating in blood are complex-type diantennary and triantennary chains in a ratio of 6 : 1 with the galactose being > 90% sialylated with alpha 2-->6 linked N-acetylneuraminic acid. About 50% of the triantennary structures contain one sLe(x) motif. Proximal alpha 1-->6 fucosylation of oligosacharides from Chinese hamster ovary cell-derived HCII was detected in > 90% of the diantennary and triantennary glycans, the latter being slightly less sialylated with exclusively alpha 2-->3-linked N-acetylneuraminic acid units. Applying the ESI-MS/ MS-MS technique, we demonstrate that the tryptic peptides comprising tyrosine residues in positions 60 and 73 were almost completely sulfated irrespective of the protein's origin. Treatment of transfected Chinese hamster ovary cells with chlorate or tunicamycin resulted in the production of heparin cofactor II molecules that eluted with higher ionic strength from heparin-Sepharose, indicating that tyrosine sulfation and N-linked glycans may affect the inhibitor's interaction with glycosaminoglycans.  相似文献   

17.
The interaction of lactoferrin with endogenous heparin-like molecules modulates glycosaminoglycan-mediated biological processes. We performed site-specific mutagenesis and expressed recombinant lactoferrin and lactoferrin mutants by the baculovirus insect cell expression system. Five basic residues at the lactoferrin N terminus; Arg 5, Arg 25, Arg 28, Lys 29, and Arg 31, were individually replaced by alanines. Heparin chromatography on fast-performance liquid chromatography system showed that the NaCl concentrations corresponding to the peak of each eluted recombinant protein from the column were 665, 620, 540, 550, 630, or 650 mM for wild-type recombinant lactoferrin, Arg 5, Arg 25, Arg 28, Lys 29, or Arg 31 recombinant lactoferrin mutant, respectively. We compared the ability of each mutated lactoferrin derivative to neutralize glycosaminoglycans in the thrombin serpin inhibition assays. In comparison to wild-type recombinant lactoferrin, all the mutants showed decreased ability to neutralize glycosaminoglycan in a dose-dependent manner. The mutations of lactoferrin at Arg 25 and Arg 28 demonstrated the most striking decrease in lactoferrin's ability to neutralize various glycosaminoglycans in both enzymatic and plasma clotting-based experiments. Therefore, our results suggest that Arg 25 and Arg 28 are the critical basic residues at the lactoferrin N terminus responsible for heparin binding. The other basic residues on the N terminus, Arg 5, Lys 29, and Arg 31, also contribute to heparin binding by presenting an additional cationic motif.  相似文献   

18.
Dermatan sulfate is a glycosaminoglycan that selectively inhibits the action of thrombin through interaction with heparin cofactor II. Unlike heparin it does not interact with other coagulation factors and is able to inhibit thrombin associated with clots. This property has made dermatan sulfate an attractive candidate as an antithrombotic drug. Previous studies have showed that dermatan sulfate derived from porcine/bovine intestinal mucosa/skin or marine invertebrates is capable of stimulating heparin cofactor II-mediated thrombin inhibition in vitro. This biological activity is reported for the first time in this study using dermatan sulfate derived from mammalian tissues other than intestinal mucosa or skin. Ten different bovine tissues including the aorta, diaphragm, eyes, large and small intestine, esophagus, skin, tendon, tongue, and tongue skin were used to prepare dermatan sulfate-enriched fractions by anion exchange chromatography and acetone precipitation. Heparin cofactor II/dermatan sulfate-mediated thrombin inhibition measured in vitro revealed activity comparable to or higher than the commercial standard with 2-fold differences observed between some tissues. Analysis of the extracted dermatan sulfate using fluorophore-assisted carbohydrate electrophoresis revealed significant differences in the relative percentage of all the mono-sulfated disaccharides, in particular the predominant mammalian disaccharide uronic acid-->N-acetyl-D-galactosamine-4-O-sulfate, confirming previous reports regarding variations in sulfation in dermatan sulfate from different tissues. Overall, these findings demonstrate that dermatan sulfate extracted from a range of bovine tissues exhibits in vitro antithrombin activity equivalent to or higher than that observed for porcine intestinal mucosa, identifying additional sources of dermatan sulfate as potential antithrombotic agents.  相似文献   

19.
The role of different glycosaminoglycan species from the vessel walls as physiological antithrombotic agents remains controversial. To further investigate this aspect we extracted glycosaminoglycans from human thoracic aorta and saphenous vein. The different species were highly purified and their anticoagulant and antithrombotic activities tested by in vitro and in vivo assays. We observed that dermatan sulfate is the major anticoagulant and antithrombotic among the vessel wall glycosaminoglycans while the bulk of heparan sulfate is a poorly sulfated glycosaminoglycan, devoid of anticoagulant and antithrombotic activities. Minor amounts of particular a heparan sulfate (< 5% of the total arterial glycosaminoglycans) with high anticoagulant activity were also observed, as assessed by its retention on an antithrombin-affinity column. Possibly, this anticoagulant heparan sulfate originates from the endothelial cells and may exert a significant physiological role due to its location in the interface between the vessel wall and the blood. In view of these results we discuss a possible balance between the two glycosaminoglycan-dependent anticoagulant pathways present in the vascular wall. One is based on antithrombin activation by the heparan sulfate expressed by the endothelial cells. The other, which may assume special relevance after vascular endothelial injury, is based on heparin cofactor II activation by the dermatan sulfate proteoglycans synthesized by cells from the subendothelial layer.  相似文献   

20.
Heparin and dermatan sulfate activate heparin cofactor II (HCII) comparably, presumably by liberating the amino terminus of HCII to bind to exosite I of thrombin. To explore this model of activation, we systematically substituted basic residues in the glycosaminoglycan-binding domain of HCII with neutral amino acids and measured the rates of thrombin inactivation by the mutants. Mutant D, with changes at Arg(184), Lys(185), Arg(189), Arg(192), Arg(193), demonstrated a approximately 130-fold increased rate of thrombin inactivation that was unaffected by the presence of glycosaminoglycans. The increased rate reflects displacement of the amino terminus of mutant D because (a) mutant D inactivates gamma-thrombin at a 65-fold slower rate than alpha-thrombin, (b) hirudin-(54-65) decreases the rate of thrombin inactivation, and (c) deletion of the amino terminus of mutant D reduces the rate of thrombin inactivation approximately 100-fold. We also examined the contribution of glycosaminoglycan-mediated bridging of thrombin to HCII to the inhibitory process. Whereas activation of HCII by heparin was chain-length dependent, stimulation by dermatan sulfate was not, suggesting that dermatan sulfate does not utilize a template mechanism to accelerate the inhibitory process. Fluorescence spectroscopy revealed that dermatan sulfate evokes greater conformational changes in HCII than heparin, suggesting that dermatan sulfate stimulates HCII by producing more effective displacement of the amino terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号