首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Gastric slow waves (GSW) are known to regulate gastric motility and are impaired with rectal distention (RD). Electroacupuncture (EA) at body acupoints, such as ST 36, has been shown to improve gastric dysrhythmias; however, little is known about the possible effects of auricular electroacupuncture (AEA) on GSW. To study effects and possible mechanisms of AEA on RD-induced gastric dysrhythmias in rats, ten male Sprague-Dawley (SD) rats implanted with gastric serosal electrodes were studied in two different experiments in fed state. Four sessions were performed in experiment 1 as follows: control (RD, no stimulation), RD+AEA, RD+EA at body points and RD+sham AEA. Two sessions were included in experiment 2 to study mechanisms of AEA: RD + atropine and RD + atropine + AEA. It was found that 1) RD significantly decreased the percentage of normal GSW from 89.8±3.5% to 76.0±3.3% (P<0.05); 2) AEA increased the percentage of normal GSW during RD to 94.0±2.1% (P<0.05 vs. RD) via a reduction in the percentages of tachygastria and arrhythmia (P<0.05 vs. RD); 3) atropine blocked the ameliorating effect of AEA on RD-induced gastric dysrhythmias. Our results demonstrated that RD induces gastric dysrhythmias in fed state in rats. AEA improves RD-induced gastric dysrhythmias via the vagal pathway. AEA may have a therapeutic potential in treating gastric dysrhythmias.  相似文献   

2.
Background acupuncture (AP) has been shown to have a therapeutic potential for gastrointestinal motility disorders. The aims of this study were to investigate the effects and possible mechanisms of acupuncture on postprandial upper and lower abdominal symptoms induced by rectal distension (RD). Twenty healthy volunteers were involved in a two-session study (AP and sham-AP, AP and no-AP, or sham-AP and no-AP). In 12 of the volunteers, RD was performed for 60 min in the postprandial state, and AP at ST36 or sham-AP was performed during the second 30-min period of RD. Gastric slow waves and heart rate variability (HRV) were recorded using the electrogastrogram and electrocardiogram, respectively. Upper and lower abdominal symptoms were scored during RD with AP and sham-AP. In five of the subjects, an additional experiment with two sessions (with AP and no-AP) was performed. In the remaining eight volunteers, the same experiment was performed with sham-AP and no-AP was performed. The results were, first, RD at an average volume of 171 ml induced upper and lower abdominal symptoms (P < 0.01). AP, but not sham-AP or no-AP, reduced both upper and lower abdominal symptoms (P < 0.05). Second, RD decreased the percentage of normal gastric slow waves (P < 0.05). AP improved gastric slow waves compared with sham-AP or no-AP (P < 0.05). Third, in the larger, but not smaller, sample size experiment, the vagal activity during the RD plus AP period was significantly higher than that during the RD alone period in the same session and the corresponding period with sham-AP or no-AP in other sessions (P < 0.05). Neither sham-AP nor no-AP showed any effects on vagal activity (P > 0.05). Finally, in the experiment with eight volunteers, neither sham-AP nor no-AP showed any effects on RD-induced impairment in gastric slow waves, abdominal symptoms, or vagal activity (P > 0.05). The conclusions are RD induces upper or lower abdominal symptoms and impairs gastric slow waves in healthy volunteers. AP at ST36 is able to improve upper and lower abdominal symptoms and impaired gastric slow waves induced by RD, possibly mediated via the vagal pathway.  相似文献   

3.
Desvenlafaxine succinate (DVS; Pristiq) is a new antidepressant, serotonin-norepinephrine reuptake inhibitor. Antidepressants have been widely used for the treatment of functional gastrointestinal disorders. Possible roles of DVS on gastrointestinal motility have not been studied. The aim of this study was to investigate the effects of DVS on gastric slow waves (GSW), antral contractions, and gastric accommodation in dogs. Fifteen healthy dogs implanted with gastric serosal electrodes and a gastric cannula were studied in four separate sessions: control, DVS (50 mg), propranolol (1 mg·kg(-1)·h(-1)), and propranolol + DVS. GSW were measured via the gastric serosal electrodes. Antral contractions were assessed via an intraluminal manometric catheter inserted via the gastric cannula. The sympathovagal activity was assessed from the spectral analysis of the heart rate variability signal. Gastric tone was measured by barostat via an intragastric balloon inserted into the fundus via the gastric cannula. In the postprandial period, in comparison with the control, DVS reduced the percentage of normal GSW (P=0.001) and increased the percentage of tachygastria (P=0.005) and bradygastria (P=0.002). Simultaneously, DVS increased the sympathetic activity (P=0.006) and the sympathovagal ratio (low frequency/high frequency; P=0.044). These effects were blocked by propranolol. DVS attenuated postprandial antral contractions and gastric accommodation. The postprandial antral contractile index (area under the curve) was decreased by 26% with DVS (P=0.013), and gastric accommodation was decreased by about 50% with DVS (P < 0.001). The inhibitory effect of DVS on gastric accommodation was blocked by propranolol. DVS inhibits gastric contractions, slow waves, and accommodation in the fed state. These inhibitory effects are associated with an increased sympathetic modulation in the gastrointestinal system. Cautions should be made when DVS is used for treating patients with depression and gastric motility disorders.  相似文献   

4.
The effects of manual acupuncture on gastric motility were investigated in 35 conscious rats implanted with a strain gauge transducer. Twenty (57.1%) rats showed no cyclic groupings of strong contractions (type A), whereas 15 (42.9%) rats showed the phase III-like contractions of the migrating motor complex (type B) in the fasting gastric motility. Acupuncture at the stomach (ST)-36 (Zusanli), but not on the back [Weishu, bladder (BL)-21], increased the peak amplitude of contractions to 172.4 +/- 25.6% of basal in the type A rats (n = 20, P < 0.05). On the other hand, the motility index for 60 min after the acupuncture was not affected by the acupuncture in this group. On the contrary, acupuncture decreased the peak amplitude and motility index to 72.9 +/- 14.0% and 73.6 +/- 16.2% in the type B rats (n = 15, P < 0.05), respectively. The stimulatory and inhibitory effects of acupuncture observed in each type were reproducible on the separate days. In 70% of type A rats, acupuncture induced strong phase III-like contractions lasting for over 3 h that were abolished by atropine, hexamethonium, atropine methyl bromide, and vagotomy. Naloxone significantly shortened the duration of the stimulatory effects from 3.52 +/- 0.21 to 1.02 +/- 0.15 h (n = 3, P < 0.05). These results suggest that acupuncture at ST-36 induces dual effects, either stimulatory or inhibitory, on gastric motility. The stimulatory effects are mediated in part via vagal efferent and opioid pathways.  相似文献   

5.
Our purposes were to 1) develop an animal model where intravenously (iv) administered d-glucose consistently inhibited antral motility, and 2) use this model to assess whether iv glucose acts to inhibit motility from a peripheral or a central nervous system site and to elucidate the factor(s) that determine(s) whether stomach motor function is sensitive to changes in blood glucose. Rats were anesthetized with alpha-chloralose-urethane, and antral motility was measured by a strain-gauge force transducer sutured to the antrum. In some cases, antral motility and gastric tone were measured by monitoring intragastric balloon pressure. Increases in blood glucose were produced by continuous iv infusion of 25% d-glucose at 2 ml/h. Inhibition of antral motility and gastric tone was observed when gastric contractions were induced by hypoglycemia (subcutaneously administered insulin, 2.5 IU/animal). In contrast, no inhibition of gastric motor function was observed when glucose infusion was tested on gastric contractions that were 1) spontaneously occurring, 2) evoked by iv administered bethanechol in vagotomized animals, and 3) evoked by the TRH analog RX77368, microinjected into the dorsal motor nucleus of the vagus. Using the model of insulin-induced hypoglycemia to increase gastric motor activity, we found that neither sectioning the hepatic branch of the vagus (n = 5), nor treating animals with capsaicin to destroy sensory vagal afferent nerves (n = 5) affected the ability of iv d-glucose to inhibit gastric motor function. Our results indicate that an important factor determining whether stomach motor function will be sensitive to changes in blood glucose is the method used to stimulate gastric contractions, and that the primary site of the inhibitory action of iv glucose on gastric motility is the central nervous system rather than the periphery.  相似文献   

6.
The aim of this study was to investigate the effects and mechanisms of electroacupuncture (EA) on rectal distension (RD)-induced delay in solid gastric emptying in dogs. Gastric emptying of solids was assessed in 12 dogs chronically implanted with a duodenal cannula by collecting samples at different time points from the cannula and measuring the dried weights of the samples. Bethanechol and atropine were used to qualitatively validate the method. In separate experiments, gastric emptying of solids was measured in a number of sessions: control, RD, RD + sham-EA, RD + EA of 6 mA, RD + EA of 3 mA, and RD + EA + naloxone. The method of gastric emptying by collecting and drying gastric chyme from the duodenal cannula was found to be accurate and reliable. Using the method, we found gastric emptying to be accelerated with bethanechol (70.01 ± 8.10% vs. 82.61 ± 4.15%, P = 0.04, vs. control) and delayed with atropine (4.31 ± 1.57%, P < 0.001, vs. control). RD substantially and significantly delayed gastric emptying. EA, but not sham-EA, attenuated delayed gastric emptying induced by RD (sham-EA: 48.79 ± 9.47% vs. EA: 74.28 ± 5.96%, P < 0.01). The effect was more potent with EA of 6 mA than EA of 3 mA and blocked by naloxone. EA is able to attenuate RD-induced delay in gastric emptying of solids, and this ameliorating effect may be mediated via the opioid pathway. EA may have a therapeutic potential for treating delayed gastric emptying attributed to lower gut distension.  相似文献   

7.
Although acupuncture has a significant clinical benefit, the mechanism of acupuncture remains unclear. Vasopressin, a posterior pituitary hormone, is involved in nausea and vomiting in humans and dogs. To investigate the antiemetic effects of acupuncture on vasopressin-induced emesis, gastroduodenal motor activity and the frequency of retching and vomiting were simultaneously recorded in conscious dogs. In seven dogs, four force transducers were implanted on the serosal surfaces of the gastric body, antrum, pylorus, and duodenum. Gastroduodenal motility was continuously monitored throughout the experiment. Vasopressin was intravenously infused at a dose of 0.1 U x kg(-1) x min(-1) for 20 min. Electroacupuncture (EA, 1-30 Hz) at pericardium-6 (PC6), bladder-21 (BL21), or stomach-36 (ST36) was performed before, during, and after the vasopressin infusion. To investigate whether the opioid pathway is involved in EA-induced antiemetic effects, naloxone (a central and peripheral opioid receptor antagonist) or naloxone methiodide (a peripheral opioid receptor antagonist) was administered before, during, and after EA and vasopressin infusion. Intravenous infusion of vasopressin induced retching and vomiting in all dogs tested. Retrograde peristaltic contractions occurred before the onset of retching and vomiting. EA (10 Hz) at PC6 significantly reduced the number of episodes of retching and vomiting. EA at PC6 also suppressed retrograde peristaltic contractions. In contrast, EA at BL21 or ST36 had no antiemetic effects. The antiemetic effect of EA was abolished by pretreatment with naloxone but not naloxone methiodide. It is suggested that the antiemetic effect of acupuncture is mediated via the central opioid pathway.  相似文献   

8.
Experiments were performed on four cats to characterize fasting gastric and small bowel motility and to assess the role of extrinsic vagal innervation in the control of that motor activity. A multilumen manometry tube was positioned to record pressure changes from the proximal small bowel and stomach. Transient vagal nerve blockade was accomplished by cooling the cervical vagosympathetic nerve trunks, previously isolated in skin loops on each side of the neck. Two characteristic patterns of basal activity were documented in the stomach: (i) regular phasic contractions of variable amplitude in the body of the stomach; and (ii) infrequent, irregular contractions of high amplitude in the distal antrum. In the duodenum, two predominant activity patterns were noted: (i) periods of continuous irregular activity; and (ii) irregular clusters of contractions separated by quiescent intervals. No typical migrating motor complex activity was seen in the basal gastric or small bowel recordings. Bilateral vagal blockade did not consistently change the general pattern of gastric or small bowel activity, but did appear to reduce gastric contractile activity, as measured by motility indices. We conclude that extrinsic vagal innervation does not play a major role in the control of fasting feline gastric and duodenal motility.  相似文献   

9.
The aim of this study was to determine the effects and mechanism of synchronized gastric electrical stimulation (SGES) on gastric contractions and gastric emptying. The first experiment was designed to study the effects of SGES on antral contractions in four randomized sessions. Sessions 1 (control) and 2 (atropine) were performed in the fasting state, composed of three 30-min periods (baseline, stimulation, and recovery). Sessions 3 (control) and 4 (SGES performed during 2nd 20-min period) were performed in the fed state, consisting of two 20-min periods; glucagon was injected after the first 20-min recording. The second experiment was designed to study the effect of SGES on gastric emptying and consisted of two sessions (control and SGES). SGES was delivered with train duration of 0.5-0.8s, pulse frequency of 40 Hz, width of 2 ms, and amplitude of 4 mA. We found that 1) SGES induced gastric antral contractions in the fasting state. The motility index was 1.3 +/- 0.5 at baseline and 6.1 +/- 0.7 (P = 0.001) during SGES. This excitatory effect was completely blocked by atropine. 2) SGES enhanced postprandial antral contractions impaired by glucagon. 3) SGES significantly accelerated glucagon-induced delayed gastric emptying. Gastric emptying was 25.5 +/- 11.3% without SGES and 38.3 +/- 10.7% with SGES (P = 0.006 vs. control). This novel method of SGES induces gastric antral contractions in the fasting state, enhances glucagon-induced antral hypomotility in the fed state, and accelerates glucagon-induced delayed gastric emptying. The effect of SGES on antral contractions is mediated via the cholinergic pathway.  相似文献   

10.
It is generally believed that gastric emptying of solids is regulated by a coordinated motor pattern between the antrum and pylorus. We studied the role of the vagus nerve in mediating postprandial coordination between the antrum and pylorus. Force transducers were implanted on the serosal surface of the body, antrum, pylorus, and duodenum in seven dogs. Dogs were given either a solid or a liquid meal, and gastroduodenal motility was recorded over 10 h. Gastric emptying was evaluated with radiopaque markers mixed with a solid meal. Dogs were treated with hexamethonium, N(G)-nitro-l-arginine methyl ester (l-NAME), or transient vagal nerve blockade by cooling. A postprandial motility pattern showed three distinct phases: early, intermediate, and late. In the late phase, profound pyloric relaxations predominantly synchronized with giant antral contractions that were defined as postprandial antropyloric coordination. A gastric emptying study revealed that the time at which gastric contents entered into the duodenum occurred concomitantly with antropyloric coordination. Treatment by vagal blockade or hexamethonium significantly reduced postprandial antral contractions and pyloric relaxations of the late phase. l-NAME changed pyloric motor patterns from relaxation dominant to contraction dominant. Solid gastric emptying was significantly attenuated by treatment with hexamethonium, l-NAME, and vagal blockade. Postprandial antropyloric coordination was not seen after feeding a liquid meal. It is concluded that postprandial antropyloric coordination plays an important role to regulate gastric emptying of a solid food. Postprandial antropyloric coordination is regulated by the vagus nerve and nitrergic neurons in conscious dogs.  相似文献   

11.
Gastric filling activates vagal afferents involved in peripheral signaling to the central nervous system (CNS) for food intake. It is not known whether these afferents linearly encode increasing contractions of the antrum during antral distension (AD). The aim of this study was to investigate effects of AD and electrically enhanced antral contractions on responses of vagal afferents innervating the antrum. Single-fiber recordings were made from the vagal afferents in anesthetized male Long-Evans rats. Antral contractions were measured with a solid-state probe placed in the antrum. A nonexcitatory electrical stimulation (NES) inducing no smooth muscle contractions was applied during the ascending phase of antral contractions to enhance subsequent antral contractions. Fifty-six fibers identified during AD (1 ml for 30 s) were studied through different types of mechanical stimuli. Under normal conditions, one group of fibers exhibited rhythmic firing in phase with antral contractions. Another group of fibers had nonrhythmic spontaneous firing. Responses of 15 fibers were tested with NES during multiple-step distension (MSD). NES produced a mean increase in antral contraction amplitude (177.1 +/- 35.3%) and vagal afferent firing (21.6 +/- 2.6%). Results show that both passive distension and enhanced antral contractions activate distension-sensitive vagal afferents. Responses of these fibers increase linearly to enhanced antral contraction induced by NES or MSD up to a distending volume of 0.6 ml. However, responses reached a plateau at a distending volume >0.8 ml. We concluded that enhanced contraction of the antrum can activate vagal afferents signaling to the CNS.  相似文献   

12.
In addition to studies on the action of gastric juice, William Beaumont studied the motility of Alexis St. Martin's stomach. He documented the nature of fundal and antral motility and how antral contractions might convert an admixture of solid food and gastric juice into a uniform homogenous semifluid. Beaumont described forcible contractions of the antrum, closure of the pylorus during antral contraction, and the discriminatory nature of the pylorus. Beaumont may also have made the first observations of the gastric motor component of the interdigestive migrating motor complex.  相似文献   

13.
Central corticotropin-releasing factor (CRF) plays an important role in mediating restraint stress-induced delayed gastric emptying. However, it is unclear how restraint stress modulates gastric motility to delay gastric emptying. Inasmuch as solid gastric emptying is regulated via antropyloric coordination, we hypothesized that restraint stress impairs antropyloric coordination, resulting in delayed solid gastric emptying in conscious rats. Two strain gauge transducers were sutured onto the serosal surface of the antrum and pylorus, and postprandial gastric motility was monitored before, during, and after restraint stress. Antropyloric coordination, defined as a propagated single contraction from the antrum to the pylorus within 10 s, was followed by > or = 20 s of quiescence. Restraint stress enhanced postprandial gastric motility in the antrum and pylorus to 140 +/- 9% and 134 +/- 9% of basal, respectively (n = 6). The number of episodes of antropyloric coordination before restraint stress, 2.4 +/- 0.4/10 min, was significantly reduced to 0.6 +/- 0.3/10 min by restraint stress. Intracisternal injection of the CRF type 2 receptor antagonist astressin 2B (60 microg) or guanethidine partially restored restraint stress-induced impairment of antropyloric coordination (1.6 +/- 0.3/10 min, n = 6). The restraint stress-induced augmentation of antral and pyloric contractions was increased by astressin 2B and guanethidine but abolished by atropine, hexamethonium, and vagotomy. Restraint stress enhanced postprandial gastric motility via a vagal cholinergic pathway. Restraint stress-induced delay of solid gastric emptying is due to impairment of antropyloric coordination. Restraint stress-induced impairment of antropyloric coordination might be mediated via a central CRF pathway.  相似文献   

14.
The aim of this study was to evaluate the nervous and humoral pathways involved in short-chain fatty acid (SCFA)-induced ileal brake in conscious pigs. The role of extrinsic ileal innervation was evaluated after SCFA infusion in innervated and denervated Babkin's ileal loops, and gastric motility was measured with strain gauges. Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) concentrations were evaluated in both situations. The possible involvement of absorbed SCFA was tested by using intravenous infusion of acetate. Ileal SCFA infusion in the intact terminal ileum decreased the amplitude of distal and terminal antral contractions (33 +/- 1.2 vs. 49 +/- 1.2% of the maximal amplitude recorded before infusion) and increased their frequency (1.5 +/- 0.11 vs. 1.3 +/- 0.10/min). Similar effects were observed during SCFA infusion in ileal innervated and denervated loops (amplitude, 35 +/- 1.0 and 34 +/- 0. 8 vs. 47 +/- 1.3 and 43 +/- 1.2%; frequency, 1.4 +/- 0.07 and 1.6 +/- 0.06 vs. 1.1 +/- 0.14 and 1.0 +/- 0.12/min). Intravenous acetate did not modify the amplitude and frequency of antral contractions. PYY but not GLP-1 concentrations were increased during SCFA infusion in innervated and denervated loops. In conclusion, ileal SCFA inhibit distal gastric motility by a humoral pathway involving the release of an inhibiting factor, which is likely PYY.  相似文献   

15.
Understanding of the control mechanisms underlying gastric motor function is still limited. The aim of the present study was to evaluate antral pressure-geometry relationships during gastric emptying slowed by intraduodenal nutrient infusion and enhanced by erythromycin. In seven healthy subjects, antral contractile activity was assessed by combined dynamic magnetic resonance imaging and antroduodenal high-resolution manometry. After intragastric administration of a 20% glucose solution (750 ml), gastric motility and emptying were recorded during intraduodenal nutrient infusion alone and, subsequently, combined with intravenous erythromycin. Before erythromycin, contraction waves were antegrade (propagation speed: 2.7 +/- 1.7 mm/s; lumen occlusion: 47 +/- 14%). Eighty-two percent (51/62) of contraction waves were detected manometrically. Fifty-four percent of contractile events (254/473) were associated with a detectable pressure event. Pressure and the degree of lumen occlusion were only weakly correlated (r(2) = 0.02; P = 0.026). After erythromycin, episodes of strong antroduodenal contractions were observed. In conclusion, antral contractions alone do not reliably predict gastric emptying. Erythromycin induces strong antroduodenal contractions not necessarily associated with fast emptying. Finally, manometry reliably detects ~80% of contraction waves, but conclusions from manometry regarding actual contractile activity must be made with care.  相似文献   

16.
Obestatin is a novel peptide encoded by the ghrelin precursor gene; however, its effects on gastrointestinal motility remain controversial. Here we have examined the effects of obestatin on fed and fasted motor activities in the stomach and duodenum of freely moving conscious rats. We examined the effects of intravenous (IV) injection of obestatin on the percentage motor index (%MI) and phase III-like contractions in the antrum and duodenum. The brain mechanism mediating the action of obestatin on gastroduodenal motility and the involvement of vagal afferent pathway were also examined. Between 30 and 90 min after IV injection, obestatin decreased the %MI in the antrum and prolonged the time taken to return to fasted motility in the duodenum in fed rats given 3 g of chow after 18 h of fasting. Immunohistochemical analysis demonstrated that corticotropin-releasing factor- and urocortin-2-containing neurons in the paraventricular nucleus in the hypothalamus were activated by IV injection of obestatin. Intracerebroventricular injection of CRF type 1 and type 2 receptor antagonists prevented the effects of obestatin on gastroduodenal motility. Capsaicin treatment blocked the effects of obestatin on duodenal motility but not on antral motility. Obestatin failed to antagonize ghrelin-induced stimulation of gastroduodenal motility. These results suggest that, in the fed state, obestatin inhibits motor activity in the antrum and duodenum and that CRF type 1 and type 2 receptors in the brain might be involved in these effects of obestatin on gastroduodenal motility.  相似文献   

17.
It is hypothesised that the GABA(B) receptor agonist baclofen increases or has no effect on food intake, and electrical stimulation of vagal nerves decreases food intake. The aim of this study was to evaluate the effects of baclofen in vagally stimulated rats. MATERIAL AND METHODS: Thirty two Wistar rats were divided into five groups: group A scheduled for microchip implantation for vagal stimulation, group B for sham operation, group C for microchip implantation and baclofen medication, group D for baclofen medication only and group E for gastric motility evaluation under influence of baclofen. The following parameters were then evaluated: food intake and body mass, gastric motility, leptin, insulin, and glucose serum levels. RESULTS: In the comparison of groups B and A, daily food intake and body weight gain decreased by 17% (p<0.05) and by 22% (p<0.05), respectively. Baclofen alone (group D) did not significantly change either food intake nor diurnal body weight compared to the controls, but when used in conjunction with the microchip (group C) it did significantly reduce effect of vagal neuromodulation (p<0.05). Furthermore, a significant decrease in leptin and glucose levels was detected in group C: 677 to 165 pg/ml (p<0.05) and 5,93 to 4,88 mmol/l (p<0.05), respectively. The administration of baclofen stimulated significantly gastric motility and elicited irregular motor migrating complex (327+/-200 against control 255+/-52 cmH2O/s). CONCLUSIONS: These results suggest that microchip vagal neuromodulation through increased vagal afferent activity induces an alteration in the feeding behaviour and decreases nocturnal food intake and body weight. These effects were partially attenuated by baclofen. The data suggests that GABA(B) receptors play an important role in the pathomechanism of attenuation of food intake induced by vagal nerve stimulation.  相似文献   

18.
Zhang AJ  Tang M  Jiang ZY 《生理学报》2002,54(5):417-421
采用清醒大鼠胃运动记录和玻璃微电极记录神经元活动的实验方法 ,研究下丘脑外侧区 (lateralhy pothalamicarea,LHA)微量注射胃动素 (motilin) ,对清醒大鼠胃窦运动和对麻醉大鼠迷走背核复合体 (dorsalvagalcomplex ,DVC)中胃扩张敏感神经元电活动的调节作用。LHA内微量注射胃动素 (0 37nmol/ 0 5 μl)可使胃窦运动增强 76 2 9± 4 0 9% (P <0 0 1)。DVC中 6 0个胃扩张 (gastricdistention ,GD)敏感神经元中 ,39(6 5 % )个GD刺激引起电活动增强 ,2 1(35 % )个电活动减弱 ,分别称之为GD兴奋型神经元和GD抑制型神经元。双侧LHA微量注射胃动素 0 37nmol/ 0 5 μl,14个GD抑制型神经元中有 12个单位放电频率增加 4 4 35± 7 89% (P <0 0 1) ;2 4个GD兴奋型神经元中有 15个单位放电频率减少 7 17± 7 89% (P <0 0 5 )。结果提示 ,中枢胃动素可能通过LHA-DVC-迷走神经实现对胃窦运动的调控  相似文献   

19.
Various reflexes inhibit gastric motor activity. Might a contrary one permit the oral region to increase gastric motility? Ten fasted rats were allowed to feed for 15 min. Following anesthesia and cannula insertion, antral pressure was recorded during three consecutive 5-min intervals: the baseline, procedure, and postprocedure periods. The procedure involved manually lowering and raising the mandible about once per second, causing repetitive molar occlusion. Doing this when food is in the stomach resembles conditions as the latter part of a meal is consumed. Gastric motor events increased from 1.10 +/- 1.67 (mean +/- SD) to 5.50 +/- 4.12 per 5 min during the procedure (p < 0.05) and 5.80 +/- 3.97 in the ensuing period (p < 0.05). The findings suggest an excitatory reflex following stimulation of mechanoreceptors in one or more sites related to mastication: the periodontium, temporomandibular joints, or masticatory muscles. Because rubbing the maxillary molars while the mouth remained constantly open also increased motor events, the periodontium is the most likely location of the receptors. They and associated trigeminal neurons would comprise the reflex's afferent arm. The vagi, perhaps with intermediaries, are its likely efferent arm. In these recently fed rats this reflex acts despite receptive relaxation and enterogastric reflexes to increase distal gastric motor activity.  相似文献   

20.
It has been shown that centrally administered neuropeptide Y (NPY) delays gastric emptying. To determine the receptor subtypes of NPY mediating the inhibitory effects on gastric emptying, effects of intracerebroventricular injection of NPY, [Leu31,Pro34]NPY (a Y1 agonist) and NPY-(3-36) (a Y2 agonist) on solid gastric emptying and postprandial antropyloric motility were studied in conscious rats. Intracerebroventricular injection of NPY and NPY-(3-36), but not [Leu31,Pro34] NPY, delayed solid gastric emptying in a dose-dependent manner (0.03-3 nmol). After the feeding (40 min), contractions with low frequency and high amplitude of the antrum were frequently observed, and the peak contraction of the antrum occurred most often 3-6 s before the peak contraction of the pylorus. Intracerebroventricular injection of NPY and NPY-(3-36) (3 nmol), but not [Leu31,Pro34]NPY, significantly reduced antral contractions and the number of antropyloric coordination events. It is suggested that centrally administered NPY impairs postprandial antral contractions and antropyloric coordination via Y2 receptors, resulting in delayed gastric emptying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号