首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
To determine how the modern copy number (5) of hsp70 genes in Drosophila melanogaster evolved, we localized the duplication events that created the genes in the phylogeny of the melanogaster group, examined D. melanogaster genomic sequence to investigate the mechanisms of duplication, and analyzed the hsp70 gene sequences of Drosophila orena and Drosophila mauritiana. The initial two-to-four hsp70 duplication occurred 10--15 MYA, according to fixed in situ hybridization to polytene chromosomes, before the origin and divergence of the melanogaster and five other species subgroups of the melanogaster group. Analysis of more than 30 kb of flanking sequence surrounding the hsp70 gene clusters suggested that this duplication was likely a retrotransposition. For the melanogaster subgroup, Southern hybridization and an hsp70 restriction map confirmed the conserved number (4) and arrangement of hsp70 genes in the seven species other than D. melanogaster. Drosophila melanogaster is unique; tandem duplication and gene conversion at the derived cluster yielded a fifth hsp70 gene. The four D. orena hsp70 genes are highly similar and concertedly evolving. In contrast, the D. mauritiana hsp70 genes are divergent, and many alleles are nonfunctional. The proliferation, concerted evolution, and maintenance of functionality in the D. melanogaster hsp70 genes is consistent with the action of natural selection in this species.  相似文献   

2.
3.
4.
5.
Duplicated genes frequently evolve at different rates. This asymmetry is evidence of natural selection's ability to discriminate between the 2 copies, subjecting them to different levels of purifying selection or even permitting adaptive evolution of one or both copies. However, if gene duplication creates pairs of protein-coding sequences that are initially identical, this raises the question of how selection tells the 2 copies apart. Here, we investigated asymmetric sequence divergence of recently duplicated genes in rodents and related this to 2 possible sources of such asymmetry: gene relocation as a consequence of duplication and retrotransposition as a mechanism of gene duplication. We found that most young rodent duplicates that have been relocated were created by retrotransposition. The degree of rate asymmetry in gene pairs where one copy has been relocated (either by retrotransposition or DNA-based duplication) is greater than in pairs formed by local DNA-based duplication events. Furthermore, by considering the direction of transposition for distant duplicates, we found a consistent tendency for retrogenes to undergo accelerated protein evolution relative to their static paralogs, whereas DNA-based transpositions showed no such tendency. Finally, we demonstrate that the faster sequence evolution of retrogenes correlates with the profound alteration of their expression pattern that is precipitated by retrotransposition.  相似文献   

6.
Chromatin condensation is a typical feature of sperm cells. During mammalian spermiogenesis, histones are first replaced by transition proteins and then by protamines, while little is known for Drosophila melanogaster. Here we characterize three genes in the fly genome, Mst35Ba, Mst35Bb, and Mst77F. The results indicate that Mst35Ba and Mst35Bb encode dProtA and dProtB, respectively. These are considerably larger than mammalian protamines, but, as in mammals, both protamines contain typical cysteine/arginine clusters. Mst77F encodes a linker histone-like protein showing significant similarity to mammalian HILS1 protein. ProtamineA-enhanced green fluorescent protein (eGFP), ProtamineB-eGFP, and Mst77F-eGFP carrying Drosophila lines show that these proteins become the important chromosomal protein components of elongating spermatids, and His2AvDGFP vanishes. Mst77F mutants [ms(3)nc3] are characterized by small round nuclei and are sterile as males. These data suggest the major features of chromatin condensation in Drosophila spermatogenesis correspond to those in mammals. During early fertilization steps, the paternal pronucleus still contains protamines and Mst77F but regains a nucleosomal conformation before zygote formation. In eggs laid by sesame-deficient females, the paternal pronucleus remains in a protamine-based chromatin status but Mst77F-eGFP is removed, suggesting that the sesame gene product is essential for removal of protamines while Mst77F removal is independent of Sesame.  相似文献   

7.
8.
The Aldolase multigene family comprises three functional genes (A, B, and C) with tissue-specific expression regulated during ontogeny. DGGE analysis and nucleotide sequencing reveal a family of retropseudogenes of type A in species of MUS: Significant variation in rates of evolution of Aldolase A retropseudogenes is apparent. Our analyses demonstrate that (1) multiple events of retrotransposition are needed to account for the diversity of Aldolase A processed pseudogenes found in mice; (2) some of these sequences have undergone further duplication subsequent to the original retrotransposition event; (3) the patterns of nucleotide substitution are broadly comparable with previous estimates; and (4) estimates of rates of divergence for this array of sequences are up to four times higher than those reported in the literature.  相似文献   

9.
10.
A total of 752 odorant receptor (Or) genes, including pseudogenes, were identified in 11 Drosophila species and named after their orthologs in Drosophila melanogaster. The 813 Or genes, including 61 from D. melanogaster, were classified into 59 orthologous groups that are well supported by gene phylogeny. By reconciling with the gene family phylogeny, we estimated the number of gene duplication/loss events and intron gain/loss events in the species phylogeny. We found that these events are particularly frequent in Drosophila grimshawi, Drosophila willistoni, and obscura group. More than half of the duplicated genes stay as tandem arrays, whose size range from 2 to 8. These genes vary in sequence and some likely underwent positive selection, indicating that the gene duplication was important for flies to acquire new olfactory functions. We hypothesize that Or genes conferred the basic olfactory repertoire to ancestral flies before the speciation of the Drosophila and Sophophora subgenera about 40 Mya. This repertoire has been largely maintained in the current species, whereas lineage-specific gene duplication seems to have led to additional specialization in some species in response to specific ecological conditions.  相似文献   

11.
Ponce R  Hartl DL 《Gene》2006,376(2):174-183
The origin of new genes and of new functions for existing genes are fundamental processes in molecular evolution. Sdic is a newly evolved gene that arose recently in the D. melanogaster lineage. The gene encodes a novel sperm motility protein. It is a chimeric gene formed by duplication of two other genes followed by multiple deletions and other sequence rearrangements. The Sdic gene exists in several copies in the X chromosome, and is presumed to have undergone several duplications to form a tandemly arrayed gene cluster. Given the very recent origin of the gene and the gene cluster, the analysis of the composition of this gene cluster represents an excellent opportunity to study the origin and evolution of new gene functions and the fate of gene duplications. We have analyzed the nucleotide sequence of this region and reconstructed the evolutionary history of this gene cluster. We found that the cluster is composed by four tandem copies of Sdic; these duplicates are very similar but can be distinguished by the unique pattern of insertions, deletions, and point mutations in each copy. The oldest gene copy in the array has a 3' exon that has undergone accelerated diversification, and also shows divergent regulatory sequences. Moreover, there is evidence that this might be the only gene copy in the tandem array that is transcribed at a significant level, expressing a novel sperm-specific protein. There is also a retrotransposon located at the 3' end of each Sdic gene copy. We argue that this gene cluster was formed in the last two million years by at least three tandem duplications and one retrotransposition event.  相似文献   

12.
13.
Gene duplication by retrotransposition duplicates only the coding and untranslated regions of a gene and, thus, biases retroduplicated genes toward having different expression patterns from their parental genes. As such, genes duplicated by retrotransposition are more likely to develop novel expression domains. To explore this idea further, we used the Prat/Prat2 gene duplication in Drosophila as a case study to examine the aftermath of a retrotransposition event that resulted in both the parent and the child gene becoming essential for survival. We used the Gal4-UAS transgene system with EGFP as a reporter to determine the developmental expression patterns of Prat and Prat2 from D. melanogaster (DmPrat and DmPrat2) and Prat from D. virilis (DvPrat). We also tested the functional equivalence of the protein products of DmPrat and DmPrat2. We found that each of the proteins could rescue DmPrat mutations, showing that the requirement for both Prat and Prat2 in Drosophila is not simply due to differences in protein function. In contrast, we found that the DmPrat and DmPrat2 genes have developed nonoverlapping patterns of expression, which correlate with their respective loss-of-function phenotypes. We further found that DvPrat expression is similar to DmPrat during development but differs in adult gonads. Thus, the function of the Prat retrogene has not diverged in the D. melanogaster and D. virilis lineages, while some aspects of its expression pattern have evolved. Finally, we have identified promoter elements, conserved upstream of DmPrat and DvPrat, that this retrogene has acquired to drive its expression.  相似文献   

14.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

15.
Proteins present in the seminal fluid of Drosophila melanogaster (accessory gland proteins Acps) contribute to female postmating behavioral changes, sperm storage, sperm competition, and immunity. Consequently, male-female coevolution and host-pathogen interactions are thought to underlie the rapid, adaptive evolution that characterizes several Acp-encoding genes. We propose that seminal fluid proteases are likely targets of selection due to their demonstrated or potential roles in between-sex interactions and immune processes. We use within- and between-species sequence data for 5 predicted protease-encoding Acp loci to test this hypothesis. Our polymorphism-based analyses find evidence for positive selection at 2 genes, both of which encode predicted serine protease homologs. One of these genes, CG6069, also shows evidence for consistent selection on a subset of codons over a deeper evolutionary time scale. The second gene, CG9997, was previously shown to be essential for normal sperm usage, suggesting that sexual selection may underlie its history of adaptation.  相似文献   

16.
The Sex-lethal (SXL) protein belongs to the family of RNA-binding proteins and is involved in the regulation of pre-mRNA splicing. SXL has undergone an obvious change of function during the evolution of the insect clade. The gene has acquired a pivotal role in the sex-determining pathway of Drosophila, although it does not act as a sex determiner in non-drosophilids. We collected SXL sequences of insect species ranging from the pea aphid (Acyrtho siphom pisum) to Drosophila melanogaster by searching published articles, sequencing cDNAs, and exploiting homology searches in public EST and whole-genome databases. The SXL protein has moderately conserved N- and C-terminal regions and a well-conserved central region including 2 RNA recognition motifs. Our phylogenetic analysis shows that a single orthologue of the Drosophila Sex-lethal (Sxl) gene is present in the genomes of the malaria mosquito Anopheles gambiae, the honeybee Apis mellifera, the silkworm Bombyx mori, and the red flour beetle Tribolium castaneum. The D. melanogaster, D. erecta, and D. pseudoobscura genomes, however, contain 2 paralogous genes, Sxl and CG3056, which are orthologous to the Anopheles, Apis, Bombyx, and Tribolium Sxl. Hence, a duplication in the fly clade generated Sxl and CG3056. Our hypothesis maintains that one of the genes, Sxl, adopted the new function of sex determiner in Drosophila, whereas the other, CG3056, continued to serve some or all of the yet-unknown ancestral functions.  相似文献   

17.
Zhan ZB  Zhang Y  Zhao RP  Wang W 《动物学研究》2011,32(6):585-595
Origin and evolution of new genes contribute a lot to genome diversity. New genes usually form chimeric gene structures through DNA-based exon shuffling and generate proteins with novel functions. We investigated polymorphism of 14 chimeric new genes in Drosophila melanogaster populations and found that eight have premature stop codons in some individuals while six are intact in the population, four of which are under negative selection, suggesting the two evolutionary fates of new chimeric genes after origination: accumulate premature stop codons and pseudolize, or acquire functions and get fixed by natural selection. Different from new genes originated through RNA-based duplication (retroposition) which are usually testis-specific or male-specific expressed, the expression patterns of these new genes through DNA-based exon shuffling are temporally and spatially diverse, implying that they may have the potential to evolve various biological functions despite that they may become pseudogenes or non-protein-coding RNA genes.  相似文献   

18.
吕山花  孟征 《植物学报》2007,24(1):60-70
基因的重复(duplication)及其功能的多样性(diversification)为生物体新的形态进化提供了原材料。MADS-box基因在植物(特别是被子植物)的进化过程中发生了大规模的基因重复事件而形成一个多基因家族。MADS-box基因家族的不同成员在植物生长发育过程中起着非常重要的作用, 在调控开花时间、决定花分生组织和花器官特征以及调控根、叶、胚珠及果实的发育中起着广泛的作用。探讨MADS-box基因家族的进化历史有助于深入了解基因重复及随后其功能分化的过程和机制。本文综述了MADS-box基因家族基因重复及其功能分化式样的研究进展。  相似文献   

19.
MADS-box基因家族基因重复及其功能的多样性   总被引:7,自引:0,他引:7  
基因的重复(duplication)及其功能的多样性(diversification)为生物体新的形态进化提供了原材料。MADS-box基因在植物(特别是被子植物)的进化过程中发生了大规模的基因重复事件而形成一个多基因家族。MADS-box基因家族的不同成员在植物生长发育过程中起着非常重要的作用,在调控开花时间、决定花分生组织和花器官特征以及调控根、叶、胚珠及果实的发育中起着广泛的作用。探讨MADS-box基因家族的进化历史有助于深入了解基因重复及随后其功能分化的过程和机制。本文综述了MADS-box基因家族基因重复及其功能分化式样的研究进展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号